ORPP logo
Image from Google Jackets

Natural Gas Processing from Midstream to Downstream.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2018Edition: 1st edDescription: 1 online resource (587 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119269632
Subject(s): Genre/Form: Additional physical formats: Print version:: Natural Gas Processing from Midstream to DownstreamLOC classification:
  • TN880 .N388 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 Introduction to Natural Gas Monetization -- 1.1 Introduction -- 1.2 Natural Gas Chain -- 1.3 Monetization Routes for Natural Gas -- 1.3.1 Large Industries and Power Plants -- 1.3.2 Small/Medium Industries and Commercial Users -- 1.3.3 Residential -- 1.3.4 Natural Gas Export -- 1.3.4.1 Pipeline Export -- 1.3.4.2 Liquefied Natural Gas (LNG) -- 1.4 Natural Gas Conversion to Chemicals and Fuels -- 1.5 Summary -- Acknowledgment -- References -- Chapter 2 Techno‐Economic Analyses and Policy Implications of Environmental Remediation of Shale Gas Wells in the Barnett Shales -- 2.1 Introduction -- 2.1.1 Framing the Issues: The Energy and Environmental Equation -- 2.1.2 Well Lifecycle Analysis and Environmental Impacts -- 2.2 Shale Gas Operations -- 2.2.1 Summary of Shale Gas Operations -- 2.2.2 Hydraulic Fracturing and Water Impacts -- 2.2.2.1 Fresh Water Consumption -- 2.2.2.2 Transportation and Disposal of Produced Water -- 2.2.3 Fuel Usage -- 2.2.4 Seismicity and Seismic Implications -- 2.3 The Barnett Shale -- 2.4 Environmental Remediation of Greenhouse Gas Emissions Using Natural Gas as a Fuel -- 2.4.1 Single Fuel, Bi‐Fuel, or Dual Fuel -- 2.4.2 Forms of Natural Gas -- 2.4.3 Environmental Impact -- 2.5 Environmental Remediation of Water and Seismic Impacts -- 2.5.1 Waterless Fracturing -- 2.5.1.1 Liquefied Petroleum Gas Fracturing -- 2.5.1.2 Carbon Dioxide Fracturing -- 2.5.2 Recycling Produced Water -- 2.5.2.1 Fracturing with Produced Water -- 2.5.2.2 Treating Wastewater -- 2.6 Theoretical Calculations -- 2.6.1 Current Operations -- 2.6.1.1 Key Assumptions -- 2.6.1.2 Fuel Usage by Well -- 2.6.1.3 Annual Fuel Usage and Costs -- 2.6.1.4 Greenhouse Gas Emissions from Fuel Burn -- 2.6.1.5 Hydraulic Fracturing Impacts.
2.6.2 Operations after Environmental Remediation of Greenhouse Gases -- 2.6.2.1 Conversion to Dual Fuel Systems -- 2.6.2.2 Environmental Improvements -- 2.6.3 Operations after Environmental Remediation of Hydraulic Fracturing -- 2.6.3.1 Waterless Fracturing -- 2.6.3.2 Environmental Improvements -- 2.6.4 Net Present Value and Expected Capital Outlay -- 2.7 Results and Discussion -- 2.7.1 Improved Operations with Environmental Remediation of Greenhouse Gas Emissions -- 2.7.1.1 Capital Investment Analysis -- 2.7.1.2 Broader Economic and Environmental Benefits -- 2.7.2 Improved Operations with Alternative Fracturing Fluids -- 2.7.2.1 Cost of Alternative Fracturing Fluids -- 2.7.2.2 Availability of Salt Water Disposal Sites -- 2.7.2.3 Fracturing with CO2 vs. LPG -- 2.7.2.4 Flowback and Recycling of Fracturing Fluid -- 2.7.2.5 Seismic Implications -- 2.7.2.6 Unlocking Arid and Water Sensitive Shales -- 2.7.2.7 Broader Economic and Environmental Benefits -- 2.7.3 Environmental and Microeconomic Impacts of Combined Technology Alternatives -- 2.8 Opportunities for Future Research -- References -- Chapter 3 Thermodynamic Modeling of Natural Gas and Gas Condensate Mixtures -- 3.1 Introduction -- 3.2 Thermodynamic Models -- 3.2.1 Peng‐Robinson EoS -- 3.2.2 PC‐SAFT EoS -- 3.2.3 UMR‐PRU -- 3.3 Prediction of Natural Gas Dew Points -- 3.3.1 Synthetic Natural Gases -- 3.3.2 Real Natural Gases -- 3.4 Prediction of Dew Points and Liquid Dropout in Gas Condensates -- 3.4.1 Synthetic Gas Condensates -- 3.4.2 Real Gas Condensates -- 3.4.2.1 Characterization of the Plus Fraction -- 3.4.2.2 Dew Point Predictions -- 3.5 Case Study: Simulation of a Topside Offshore Process -- 3.6 Concluding Remarks -- References -- Chapter 4 CO2 Injection in Coal Formations for Enhanced Coalbed Methane and CO2 Sequestration -- 4.1 Coalbed Characteristics -- 4.2 Adsorption Isotherm Behavior.
4.3 Coal Wettability -- 4.4 CO2 Injectivity -- 4.5 Pilot Field Tests -- 4.6 Conclusions -- References -- Chapter 5 Fluid Flow: Basics -- 5.1 Introduction -- 5.2 Thermodynamics of Fluids -- 5.2.1 First Law of Thermodynamics -- 5.2.2 Second Law of Thermodynamics -- 5.2.3 Heat Capacity -- 5.2.4 Properties of a Perfect Gas -- 5.2.5 Equations of State -- 5.3 Fundamental Equations of Fluid Mechanics -- 5.3.1 Continuity Equation -- 5.3.2 Momentum Balance -- 5.3.3 Bernoulli's Equation -- 5.3.4 Mechanical Energy Balance -- 5.3.5 Total Energy Balance -- 5.3.6 Speed of Sound -- 5.4 Incompressible Pipeline Flow -- 5.4.1 Reynolds Number -- 5.4.2 Friction Factor -- 5.4.3 K‐Factors for Fittings -- 5.4.4 Fouling Factor -- 5.4.5 Other Head Loss and Gain Terms -- 5.4.6 Example Application -- 5.5 Laminar Flow -- 5.6 Compressible Pipeline Flow -- 5.6.1 Introductory Remarks -- 5.6.2 Isothermal Flow -- 5.6.3 Bernoulli Approximation -- 5.6.4 Isentropic Flow -- 5.6.5 Polytropic Flow -- 5.6.6 Adiabatic Flow -- 5.6.7 Choked Flow -- 5.6.8 Rationalization with Bernoulli's Equation -- 5.6.9 Example Application -- 5.7 Comparison with Crane Handbook -- References -- Chapter 6 Fluid Flow: Advanced Topics -- 6.1 Introduction -- 6.2 Notation -- 6.3 Piping Networks -- 6.3.1 Network Flow -- 6.3.2 Stagnation Pressure and Temperature -- 6.3.2.1 Incompressible -- 6.3.2.2 Isothermal -- 6.3.2.3 Isentropic -- 6.3.2.4 Adiabatic -- 6.3.3 Flow Between Vessels -- 6.3.3.1 Incompressible -- 6.3.3.2 Compressible -- 6.3.4 The System of Equations -- 6.3.5 Example Application -- 6.4 Meters -- 6.4.1 Incompressible Flow Through a Meter -- 6.4.2 Compressible Flow Through a Meter -- 6.4.3 Individual Meter Types -- 6.4.3.1 Orifice Meter -- 6.4.3.2 Flow Nozzle -- 6.4.3.3 Venturi Tube -- 6.4.4 Choked Flow Through a Meter -- 6.4.4.1 Critical Pressure Ratio -- 6.4.4.2 Maximum Flow Rate -- 6.4.5 Example Problem.
6.5 Control Valves -- 6.5.1 Incompressible Flow Through a Control Valve -- 6.5.2 Compressible Flow Through a Control Valve -- 6.5.3 Example Problem -- 6.6 Two‐Phase Gas‐Liquid Flow -- 6.6.1 Introductory Remarks -- 6.6.2 The Method of Dukler and Taitel -- 6.6.3 Pressure Drop in Two‐Phase Flow -- 6.6.4 The Homogeneous Flow Model -- 6.6.5 Temperature Effects -- 6.6.6 Comment on the Effect of Change in Elevation -- 6.6.7 Isothermal Flow -- 6.6.8 Isentropic Flow -- 6.6.9 Adiabatic Flow -- References -- Chapter 7 Use of Process Simulators Upstream Through Midstream -- 7.1 Introduction -- 7.1.1 The Origin of Hydrocarbon Process Simulation -- 7.1.2 What Is a Process Simulator? -- 7.2 Upstream -- 7.2.1 Down Hole PVT -- 7.2.2 Well Site -- 7.2.3 Pipelines -- 7.2.4 Compressor/Pump Stations -- 7.2.5 Methanol/Ethylene Glycol Injection -- 7.2.6 Tanks -- 7.3 Midstream -- 7.3.1 Amine Sweetening -- 7.3.2 Sulfur Recovery -- 7.3.3 Tail Gas Treatment -- 7.3.4 Sour Water Stripper -- 7.3.5 Incinerator/Flare -- 7.3.6 Glycol Dehydration -- 7.3.7 NGL Recovery -- 7.3.8 NGL Fractionation -- 7.4 Going Further -- Acknowledgement -- References -- Chapter 8 Optimization of Natural Gas Network Operation under Uncertainty -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Natural Gas Supply Chains -- 8.4 Optimization Model -- 8.4.1 Mathematical Notation -- 8.4.2 Considering Gas Quality in Natural Gas Production Operation -- 8.4.3 Model for the Natural Gas Network System -- 8.4.3.1 Model for the Sources -- 8.4.3.2 Model for Mixing Stations -- 8.4.3.3 Model for End Users -- 8.4.3.4 Pressure Model -- 8.4.3.5 Pipeline Performance Model -- 8.4.3.6 Compression Performance model -- 8.5 Computation Study -- 8.5.1 Implementation -- 8.5.2 Case Study and Description -- 8.6 Results and Discussion -- 8.7 Conclusions and Recommendations -- References -- Appendix.
8.A.1 Stochastic Model for the Sources -- 8.A.2 Stochastic Model for Mixing Stations -- 8.A.3 Stochastic Model for End Users -- 8.A.4 Stochastic Pipeline Performance Model -- 8.A.5 Stochastic Compression Performance Model -- Chapter 9 A Multicriteria Optimization Approach to the Synthesis of Shale Gas Monetization Supply Chains -- 9.1 Introduction -- 9.2 Methodology -- 9.3 Case Study -- 9.3.1 Problem Statement -- 9.3.2 Environmental and Safety Metrics -- 9.3.3 Objectives of the Case Study -- 9.4 Case Study Results -- 9.4.1 Feedstock -- 9.4.2 Conversion Technologies -- 9.4.3 Base Case Product Prices -- 9.4.4 Plant Costs and Capacity Limits -- 9.4.5 Base Case Solution -- 9.4.6 Reduced Methanol Price Case Results -- 9.4.7 Reduced Urea Price Case Results -- 9.4.8 Base Case Environmental Considerations -- 9.4.9 Base Case Safety Considerations -- 9.5 Conclusion -- References -- Chapter 10 Study for the Optimal Operation of Natural Gas Liquid Recovery and Natural Gas Production -- 10.1 Introduction -- 10.2 Methodology Framework -- 10.3 New Process Design for NGL Recovery -- 10.3.1 Demethanizer -- 10.3.2 J‐T Expansion -- 10.3.3 Turboexpander -- 10.3.4 Refrigeration -- 10.3.5 Compression -- 10.4 Thermodynamic Analysis for Propane Refrigeration System -- 10.4.1 Liquefaction Process Analysis -- 10.4.2 Simulation Results and Thermodynamic Analysis -- 10.5 Optimization for Natural Gas Liquefaction -- 10.5.1 Optimization Model Development -- 10.5.1.1 Objective Function -- 10.5.1.2 Pressure Ratio Constraints -- 10.5.1.3 Heat Transfer Constraints -- 10.5.1.4 Energy Balance Constraints -- 10.5.1.5 Other Constraints -- 10.5.2 Optimization Results -- 10.5.2.1 Optimization Results of Propane Cycle -- 10.5.2.2 Optimization Results of Compressor and Condenser -- 10.5.2.3 Demethanizer Pressure and Ethane Recovery -- 10.6 Conclusion -- Acknowledgements -- Abbreviations.
Nomenclature.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 Introduction to Natural Gas Monetization -- 1.1 Introduction -- 1.2 Natural Gas Chain -- 1.3 Monetization Routes for Natural Gas -- 1.3.1 Large Industries and Power Plants -- 1.3.2 Small/Medium Industries and Commercial Users -- 1.3.3 Residential -- 1.3.4 Natural Gas Export -- 1.3.4.1 Pipeline Export -- 1.3.4.2 Liquefied Natural Gas (LNG) -- 1.4 Natural Gas Conversion to Chemicals and Fuels -- 1.5 Summary -- Acknowledgment -- References -- Chapter 2 Techno‐Economic Analyses and Policy Implications of Environmental Remediation of Shale Gas Wells in the Barnett Shales -- 2.1 Introduction -- 2.1.1 Framing the Issues: The Energy and Environmental Equation -- 2.1.2 Well Lifecycle Analysis and Environmental Impacts -- 2.2 Shale Gas Operations -- 2.2.1 Summary of Shale Gas Operations -- 2.2.2 Hydraulic Fracturing and Water Impacts -- 2.2.2.1 Fresh Water Consumption -- 2.2.2.2 Transportation and Disposal of Produced Water -- 2.2.3 Fuel Usage -- 2.2.4 Seismicity and Seismic Implications -- 2.3 The Barnett Shale -- 2.4 Environmental Remediation of Greenhouse Gas Emissions Using Natural Gas as a Fuel -- 2.4.1 Single Fuel, Bi‐Fuel, or Dual Fuel -- 2.4.2 Forms of Natural Gas -- 2.4.3 Environmental Impact -- 2.5 Environmental Remediation of Water and Seismic Impacts -- 2.5.1 Waterless Fracturing -- 2.5.1.1 Liquefied Petroleum Gas Fracturing -- 2.5.1.2 Carbon Dioxide Fracturing -- 2.5.2 Recycling Produced Water -- 2.5.2.1 Fracturing with Produced Water -- 2.5.2.2 Treating Wastewater -- 2.6 Theoretical Calculations -- 2.6.1 Current Operations -- 2.6.1.1 Key Assumptions -- 2.6.1.2 Fuel Usage by Well -- 2.6.1.3 Annual Fuel Usage and Costs -- 2.6.1.4 Greenhouse Gas Emissions from Fuel Burn -- 2.6.1.5 Hydraulic Fracturing Impacts.

2.6.2 Operations after Environmental Remediation of Greenhouse Gases -- 2.6.2.1 Conversion to Dual Fuel Systems -- 2.6.2.2 Environmental Improvements -- 2.6.3 Operations after Environmental Remediation of Hydraulic Fracturing -- 2.6.3.1 Waterless Fracturing -- 2.6.3.2 Environmental Improvements -- 2.6.4 Net Present Value and Expected Capital Outlay -- 2.7 Results and Discussion -- 2.7.1 Improved Operations with Environmental Remediation of Greenhouse Gas Emissions -- 2.7.1.1 Capital Investment Analysis -- 2.7.1.2 Broader Economic and Environmental Benefits -- 2.7.2 Improved Operations with Alternative Fracturing Fluids -- 2.7.2.1 Cost of Alternative Fracturing Fluids -- 2.7.2.2 Availability of Salt Water Disposal Sites -- 2.7.2.3 Fracturing with CO2 vs. LPG -- 2.7.2.4 Flowback and Recycling of Fracturing Fluid -- 2.7.2.5 Seismic Implications -- 2.7.2.6 Unlocking Arid and Water Sensitive Shales -- 2.7.2.7 Broader Economic and Environmental Benefits -- 2.7.3 Environmental and Microeconomic Impacts of Combined Technology Alternatives -- 2.8 Opportunities for Future Research -- References -- Chapter 3 Thermodynamic Modeling of Natural Gas and Gas Condensate Mixtures -- 3.1 Introduction -- 3.2 Thermodynamic Models -- 3.2.1 Peng‐Robinson EoS -- 3.2.2 PC‐SAFT EoS -- 3.2.3 UMR‐PRU -- 3.3 Prediction of Natural Gas Dew Points -- 3.3.1 Synthetic Natural Gases -- 3.3.2 Real Natural Gases -- 3.4 Prediction of Dew Points and Liquid Dropout in Gas Condensates -- 3.4.1 Synthetic Gas Condensates -- 3.4.2 Real Gas Condensates -- 3.4.2.1 Characterization of the Plus Fraction -- 3.4.2.2 Dew Point Predictions -- 3.5 Case Study: Simulation of a Topside Offshore Process -- 3.6 Concluding Remarks -- References -- Chapter 4 CO2 Injection in Coal Formations for Enhanced Coalbed Methane and CO2 Sequestration -- 4.1 Coalbed Characteristics -- 4.2 Adsorption Isotherm Behavior.

4.3 Coal Wettability -- 4.4 CO2 Injectivity -- 4.5 Pilot Field Tests -- 4.6 Conclusions -- References -- Chapter 5 Fluid Flow: Basics -- 5.1 Introduction -- 5.2 Thermodynamics of Fluids -- 5.2.1 First Law of Thermodynamics -- 5.2.2 Second Law of Thermodynamics -- 5.2.3 Heat Capacity -- 5.2.4 Properties of a Perfect Gas -- 5.2.5 Equations of State -- 5.3 Fundamental Equations of Fluid Mechanics -- 5.3.1 Continuity Equation -- 5.3.2 Momentum Balance -- 5.3.3 Bernoulli's Equation -- 5.3.4 Mechanical Energy Balance -- 5.3.5 Total Energy Balance -- 5.3.6 Speed of Sound -- 5.4 Incompressible Pipeline Flow -- 5.4.1 Reynolds Number -- 5.4.2 Friction Factor -- 5.4.3 K‐Factors for Fittings -- 5.4.4 Fouling Factor -- 5.4.5 Other Head Loss and Gain Terms -- 5.4.6 Example Application -- 5.5 Laminar Flow -- 5.6 Compressible Pipeline Flow -- 5.6.1 Introductory Remarks -- 5.6.2 Isothermal Flow -- 5.6.3 Bernoulli Approximation -- 5.6.4 Isentropic Flow -- 5.6.5 Polytropic Flow -- 5.6.6 Adiabatic Flow -- 5.6.7 Choked Flow -- 5.6.8 Rationalization with Bernoulli's Equation -- 5.6.9 Example Application -- 5.7 Comparison with Crane Handbook -- References -- Chapter 6 Fluid Flow: Advanced Topics -- 6.1 Introduction -- 6.2 Notation -- 6.3 Piping Networks -- 6.3.1 Network Flow -- 6.3.2 Stagnation Pressure and Temperature -- 6.3.2.1 Incompressible -- 6.3.2.2 Isothermal -- 6.3.2.3 Isentropic -- 6.3.2.4 Adiabatic -- 6.3.3 Flow Between Vessels -- 6.3.3.1 Incompressible -- 6.3.3.2 Compressible -- 6.3.4 The System of Equations -- 6.3.5 Example Application -- 6.4 Meters -- 6.4.1 Incompressible Flow Through a Meter -- 6.4.2 Compressible Flow Through a Meter -- 6.4.3 Individual Meter Types -- 6.4.3.1 Orifice Meter -- 6.4.3.2 Flow Nozzle -- 6.4.3.3 Venturi Tube -- 6.4.4 Choked Flow Through a Meter -- 6.4.4.1 Critical Pressure Ratio -- 6.4.4.2 Maximum Flow Rate -- 6.4.5 Example Problem.

6.5 Control Valves -- 6.5.1 Incompressible Flow Through a Control Valve -- 6.5.2 Compressible Flow Through a Control Valve -- 6.5.3 Example Problem -- 6.6 Two‐Phase Gas‐Liquid Flow -- 6.6.1 Introductory Remarks -- 6.6.2 The Method of Dukler and Taitel -- 6.6.3 Pressure Drop in Two‐Phase Flow -- 6.6.4 The Homogeneous Flow Model -- 6.6.5 Temperature Effects -- 6.6.6 Comment on the Effect of Change in Elevation -- 6.6.7 Isothermal Flow -- 6.6.8 Isentropic Flow -- 6.6.9 Adiabatic Flow -- References -- Chapter 7 Use of Process Simulators Upstream Through Midstream -- 7.1 Introduction -- 7.1.1 The Origin of Hydrocarbon Process Simulation -- 7.1.2 What Is a Process Simulator? -- 7.2 Upstream -- 7.2.1 Down Hole PVT -- 7.2.2 Well Site -- 7.2.3 Pipelines -- 7.2.4 Compressor/Pump Stations -- 7.2.5 Methanol/Ethylene Glycol Injection -- 7.2.6 Tanks -- 7.3 Midstream -- 7.3.1 Amine Sweetening -- 7.3.2 Sulfur Recovery -- 7.3.3 Tail Gas Treatment -- 7.3.4 Sour Water Stripper -- 7.3.5 Incinerator/Flare -- 7.3.6 Glycol Dehydration -- 7.3.7 NGL Recovery -- 7.3.8 NGL Fractionation -- 7.4 Going Further -- Acknowledgement -- References -- Chapter 8 Optimization of Natural Gas Network Operation under Uncertainty -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Natural Gas Supply Chains -- 8.4 Optimization Model -- 8.4.1 Mathematical Notation -- 8.4.2 Considering Gas Quality in Natural Gas Production Operation -- 8.4.3 Model for the Natural Gas Network System -- 8.4.3.1 Model for the Sources -- 8.4.3.2 Model for Mixing Stations -- 8.4.3.3 Model for End Users -- 8.4.3.4 Pressure Model -- 8.4.3.5 Pipeline Performance Model -- 8.4.3.6 Compression Performance model -- 8.5 Computation Study -- 8.5.1 Implementation -- 8.5.2 Case Study and Description -- 8.6 Results and Discussion -- 8.7 Conclusions and Recommendations -- References -- Appendix.

8.A.1 Stochastic Model for the Sources -- 8.A.2 Stochastic Model for Mixing Stations -- 8.A.3 Stochastic Model for End Users -- 8.A.4 Stochastic Pipeline Performance Model -- 8.A.5 Stochastic Compression Performance Model -- Chapter 9 A Multicriteria Optimization Approach to the Synthesis of Shale Gas Monetization Supply Chains -- 9.1 Introduction -- 9.2 Methodology -- 9.3 Case Study -- 9.3.1 Problem Statement -- 9.3.2 Environmental and Safety Metrics -- 9.3.3 Objectives of the Case Study -- 9.4 Case Study Results -- 9.4.1 Feedstock -- 9.4.2 Conversion Technologies -- 9.4.3 Base Case Product Prices -- 9.4.4 Plant Costs and Capacity Limits -- 9.4.5 Base Case Solution -- 9.4.6 Reduced Methanol Price Case Results -- 9.4.7 Reduced Urea Price Case Results -- 9.4.8 Base Case Environmental Considerations -- 9.4.9 Base Case Safety Considerations -- 9.5 Conclusion -- References -- Chapter 10 Study for the Optimal Operation of Natural Gas Liquid Recovery and Natural Gas Production -- 10.1 Introduction -- 10.2 Methodology Framework -- 10.3 New Process Design for NGL Recovery -- 10.3.1 Demethanizer -- 10.3.2 J‐T Expansion -- 10.3.3 Turboexpander -- 10.3.4 Refrigeration -- 10.3.5 Compression -- 10.4 Thermodynamic Analysis for Propane Refrigeration System -- 10.4.1 Liquefaction Process Analysis -- 10.4.2 Simulation Results and Thermodynamic Analysis -- 10.5 Optimization for Natural Gas Liquefaction -- 10.5.1 Optimization Model Development -- 10.5.1.1 Objective Function -- 10.5.1.2 Pressure Ratio Constraints -- 10.5.1.3 Heat Transfer Constraints -- 10.5.1.4 Energy Balance Constraints -- 10.5.1.5 Other Constraints -- 10.5.2 Optimization Results -- 10.5.2.1 Optimization Results of Propane Cycle -- 10.5.2.2 Optimization Results of Compressor and Condenser -- 10.5.2.3 Demethanizer Pressure and Ethane Recovery -- 10.6 Conclusion -- Acknowledgements -- Abbreviations.

Nomenclature.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.