Power System Control under Cascading Failures : Understanding, Mitigation, and System Restoration.
Material type:
- text
- computer
- online resource
- 9781119282051
- 621.317
- TK1007 .S865 2019
Intro -- Title Page -- Copyright Page -- Contents -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Importance of Modeling and Understanding Cascading Failures -- 1.1.1 Cascading Failures -- 1.1.2 Challenges in Modeling and Understanding Cascading Failures -- 1.2 Importance of Controlled System Separation -- 1.2.1 Mitigation of Cascading Failures -- 1.2.2 Uncontrolled and Controlled System Separations -- 1.3 Constructing Restoration Strategies -- 1.3.1 Importance of System Restoration -- 1.3.2 Classification of System Restoration Strategies -- 1.3.3 Challenges of System Restoration -- 1.4 Overview of the Book -- References -- Chapter 2 Modeling of Cascading Failures -- 2.1 General Cascading Failure Models -- 2.1.1 Bak-Tang-Wiesenfeld Sandpile Model -- 2.1.2 Failure‐Tolerance Sandpile Model -- 2.1.3 Motter-Lai Model -- 2.1.4 Influence Model -- 2.1.5 Binary‐Decision Model -- 2.1.6 Coupled Map Lattice Model -- 2.1.7 CASCADE Model -- 2.1.8 Interdependent Failure Model -- 2.2 Power System Cascading Failure Models -- 2.2.1 Hidden Failure Model -- 2.2.2 Manchester Model -- 2.2.3 OPA Model -- 2.2.4 Improved OPA Model -- 2.2.5 OPA Model with Slow Process -- 2.2.6 AC OPA Model -- 2.2.7 Cascading Failure Models Considering Dynamics and Detailed Protections -- References -- Chapter 3 Understanding Cascading Failures -- 3.1 Self‐Organized Criticality -- 3.1.1 SOC Theory -- 3.1.2 Evidence of SOC in Blackout Data -- 3.2 Branching Processes -- 3.2.1 Definition of the Galton-Watson Branching Process -- 3.2.2 Estimation of Mean of the Offspring Distribution -- 3.2.3 Estimation of Variance of the Offspring Distribution -- 3.2.4 Processing and Discretization of Continuous Data -- 3.2.5 Estimation of Distribution of Total Outages -- 3.2.6 Statistical Insight of Branching Process Parameters -- 3.2.7 Branching Processes Applied to Line Outage Data.
3.2.8 Branching Processes Applied to Load Shed Data -- 3.2.9 Cross‐Validation for Branching Processes -- 3.2.10 Efficiency Improvement by Branching Processes -- 3.3 Multitype Branching Processes -- 3.3.1 Estimation of Multitype Branching Process Parameters -- 3.3.2 Estimation of Joint Probability Distribution of Total Outages -- 3.3.3 An Example for a Two‐Type Branching Process -- 3.3.4 Validation of Estimated Joint Distribution -- 3.3.5 Number of Cascades Needed for Multitype Branching Processes -- 3.3.6 Estimated Parameters of Branching Processes -- 3.3.7 Estimated Joint Distribution of Total Outages -- 3.3.8 Cross‐Validation for Multitype Branching Processes -- 3.3.9 Predicting Joint Distribution from One Type of Outage -- 3.3.10 Estimating Failure Propagation of Three Types of Outages -- 3.4 Failure Interaction Analysis -- 3.4.1 Estimation of Interactions between Component Failures -- 3.4.2 Identification of Key Links and Key Components -- 3.4.3 Interaction Model -- 3.4.4 Validation of Interaction Model -- 3.4.5 Number of Cascades Needed for Failure Interaction Analysis -- 3.4.6 Estimated Interaction Matrix and Interaction Network -- 3.4.7 Identified Key Links and Key Components -- 3.4.8 Interaction Model Validation -- 3.4.9 Cascading Failure Mitigation -- 3.4.10 Efficiency Improvement by Interaction Model -- References -- Chapter 4 Strategies for Controlled System Separation -- 4.1 Questions to Answer -- 4.2 Literature Review -- 4.3 Constraints on Separation Points -- 4.4 Graph Models of a Power Network -- 4.4.1 Undirected Node‐Weighted Graph -- 4.4.2 Directed Edge‐Weighted Graph -- 4.5 Generator Grouping -- 4.5.1 Slow Coherency Analysis -- 4.5.2 Elementary Coherent Groups -- 4.6 Finding Separation Points -- 4.6.1 Formulations of the Problem -- 4.6.2 Computational Complexity -- 4.6.3 Network Reduction.
4.6.4 Network Decomposition for Parallel Processing -- 4.6.5 Application of the Ordered Binary Decision Diagram -- 4.6.6 Checking the Transmission Capacity and Small Disruption Constraints -- 4.6.7 Checking All Constraints in Three Steps -- References -- Chapter 5 Online Decision Support for Controlled System Separation -- 5.1 Online Decision on the Separation Strategy -- 5.1.1 Spectral Analysis-Based Method -- 5.1.2 Frequency‐Amplitude Characteristics of Electromechanical Oscillation -- 5.1.3 Phase‐Locked Loop-Based Method -- 5.1.4 Timing of Controlled Separation -- 5.2 WAMS‐Based Unified Framework for Controlled System Separation -- 5.2.1 WAMS‐Based Three‐Stage CSS Scheme -- 5.2.2 Offline Analysis Stage -- 5.2.3 Online Monitoring Stage -- 5.2.4 Real‐Time Control Stage -- References -- Chapter 6 Constraints of System Restoration -- 6.1 Physical Constraints During Restoration -- 6.1.1 Generating Unit Start‐Up -- 6.1.2 System Sectionalizing and Reconfiguration -- 6.1.3 Load Restoration -- 6.2 Electromagnetic Transients During System Restoration -- 6.2.1 Generator Self‐Excitation -- 6.2.2 Switching Overvoltage -- 6.2.3 Resonant Overvoltage in the Case of Energizing No‐Load Transformer -- 6.2.4 Impact of Magnetizing Inrush Current on Transformer -- 6.2.5 Voltage and Frequency Analysis in Picking up Load -- References -- Chapter 7 Restoration Methodology and Implementation Algorithms -- 7.1 Algorithms for Generating Unit Start‐Up -- 7.1.1 A General Bilevel Framework [10] -- 7.1.2 Algorithms for the Primary Problem -- 7.1.3 Algorithms for the Second Problem -- 7.2 Algorithms for Load Restoration -- 7.2.1 Estimate Operational Region Bound -- 7.2.2 Formulate MINLR Model to Maximize Load Pickup -- 7.2.3 Branch‐and‐Cut Solver: Design and Justification -- 7.2.4 Selection of Branching Methods -- 7.3 Case Studies.
7.3.1 Illustrative Example for Restoring Generating Units -- 7.3.2 Optimal Load Restoration Strategies for RTS 24‐Bus System -- 7.3.3 Optimal Load Restoration Strategies for IEEE 118‐Bus System -- References -- Chapter 8 Renewable and Energy Storage in System Restoration -- 8.1 Planning of Renewable Generators in System Restoration -- 8.1.1 Renewables for System Restoration -- 8.1.2 The Offline Restoration Tool Using Renewable Energy Resources -- 8.1.3 System Restoration with Renewables' Participation -- 8.2 Operation and Control of Renewable Generators in System Restoration -- 8.2.1 Prerequisites of Type 3 WTs for System Restoration -- 8.2.2 Problem Setup of Type 3 WTs for System Restoration -- 8.2.3 Black‐Starting Control and Sequence of Type 3 WTs -- 8.2.4 Autonomous Frequency Mechanism of a Type 3 WT-Based Stand‐Alone System -- 8.2.5 Simulation Study -- 8.3 Energy Storage in System Restoration -- 8.3.1 Pumped‐Storage Hydro Units in Restoration -- 8.3.2 Batteries for System Restoration -- 8.3.3 Electric Vehicles in System Restoration -- References -- Chapter 9 Emerging Technologies in System Restoration -- 9.1 Applications of FACTS and HVDC -- 9.1.1 LCC‐HVDC Technology for System Restoration -- 9.1.2 VSC‐HVDC Technology for System Restoration -- 9.1.3 FACTS Technology for System Restoration -- 9.2 Applications of PMUs -- 9.2.1 Review of PMU -- 9.2.2 System Restoration with PMU Measurements -- 9.3 Microgrid in System Restoration -- 9.3.1 Microgrid‐Based Restoration -- 9.3.2 Demonstration and Practice -- References -- Chapter 10 Black-Start Capability Assessment and Optimization -- 10.1 Background of Black Start -- 10.1.1 Definition of Black Start -- 10.1.2 Constraints During BS -- 10.1.3 BS Service Procurement -- 10.1.4 Power System Restoration Procedure -- 10.2 BS Capability Assessment -- 10.2.1 Installation Criteria of New BS Generators.
10.2.2 Optimal Installation Strategy of BS Capability -- 10.2.3 Examples -- 10.3 Optimal BS Capability -- 10.3.1 Problem Formulation -- 10.3.2 Solution Algorithm -- 10.3.3 Examples -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.