ORPP logo
Image from Google Jackets

Integral Manifolds of the Three Body Problem.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1998Copyright date: ©1998Edition: 1st edDescription: 1 online resource (106 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470402174
Subject(s): Genre/Form: Additional physical formats: Print version:: Integral Manifolds of the Three Body ProblemDDC classification:
  • 521
LOC classification:
  • QB362.T5 -- M33 1998eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1. The integrals and manifolds -- 2. History of the problem -- 3. Summary of results -- Chapter 2. The Decomposition of the Spaces -- 1. The spaces and maps -- 2. The geometry of the sets -- Chapter 3. The Cohomology -- 1. The cohomology of k[sub(R)](c,h) -- 2. The cohomology of k(c,h) -- 3. The homeomorphism type of h(c,h) and h[sub(R)](c,h) -- 4. The cohomology of m[sub(R)](c,h) -- 5. The cohomology of m(c,h) -- Chapter 4. The analysis of k(c,h) for equal masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for equal masses -- 2. The semi-minor axis of the ellipse for equal masses -- 3. The graphs of Z = f(X) and Z = g(X) for equal masses -- 4. The semi- major axis of the ellipse for equal masses -- 5. The feasible region c(c, h) -- 6. k[sub(R)](c,h) for equal masses -- 7. Orientation in k(c,h) -- 8. Positive energy -- Chapter 5. The analysis of k(c,h) for general masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for general masses -- 2. The semi-minor axis of the ellipse -- 3. The graph of Z = f(X) and Z = g(X) for general masses -- 4. The semi-major axis of the ellipse for unequal masses -- 5. k[sub(R)](c,h) for unequal masses -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1. The integrals and manifolds -- 2. History of the problem -- 3. Summary of results -- Chapter 2. The Decomposition of the Spaces -- 1. The spaces and maps -- 2. The geometry of the sets -- Chapter 3. The Cohomology -- 1. The cohomology of k[sub(R)](c,h) -- 2. The cohomology of k(c,h) -- 3. The homeomorphism type of h(c,h) and h[sub(R)](c,h) -- 4. The cohomology of m[sub(R)](c,h) -- 5. The cohomology of m(c,h) -- Chapter 4. The analysis of k(c,h) for equal masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for equal masses -- 2. The semi-minor axis of the ellipse for equal masses -- 3. The graphs of Z = f(X) and Z = g(X) for equal masses -- 4. The semi- major axis of the ellipse for equal masses -- 5. The feasible region c(c, h) -- 6. k[sub(R)](c,h) for equal masses -- 7. Orientation in k(c,h) -- 8. Positive energy -- Chapter 5. The analysis of k(c,h) for general masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for general masses -- 2. The semi-minor axis of the ellipse -- 3. The graph of Z = f(X) and Z = g(X) for general masses -- 4. The semi-major axis of the ellipse for unequal masses -- 5. k[sub(R)](c,h) for unequal masses -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.