ORPP logo
Image from Google Jackets

Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2000Copyright date: ©2000Edition: 1st edDescription: 1 online resource (125 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470402877
Subject(s): Genre/Form: Additional physical formats: Print version:: Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion EquationsDDC classification:
  • 510 s;515/.353
LOC classification:
  • QA377 -- .E88 2000eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1.1. Numerical analysis and reaction-diffusion equations -- 1.2. The limitations of classic a priori error analysis -- 1.3. What we do and don't do in this paper -- 1.4. A brief overview of related work -- 1.5. The plan of the paper -- Acknowledgments -- Chapter 2. A framework for a posteriori error estimation -- 2.1. The continuous problem and its discretization -- 2.2. The residual error -- 2.3. The dual problem and a formula for the error -- 2.4. The stability factors and the a posteriori error estimate -- Chapter 3. The size of the residual errors and stability factors -- 3.1. The size of the residual errors -- 3.2. The size of the stability factors -- 3.3. Application of the analysis to systems with constant diffusion -- 3.4. The a posteriori estimate and convergence -- Chapter 4. Computational error estimation -- 4.1. Two examples and a stability factor gallery -- 4.2. Choosing data for the dual problem -- 4.3. Linearization and the approximate dual problem -- 4.4. A test of the accuracy and reliability of the error estimate -- 4.5. Some details of implementation -- 4.6. Numerical results for the nine models -- Chapter 5. Preservation of invariant rectangles under discretization -- 5.1. Invariant rectangles and convergence -- 5.2. Preservation of a "fuzzy" invariant rectangle -- 5.3. Exact preservation of an invariant rectangle -- Chapter 6. Details of the analysis in Chapter 2 -- Chapter 7. Details of the analysis in Chapter 3 -- Chapter 8. Details of the analysis in Chapter 5 -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1.1. Numerical analysis and reaction-diffusion equations -- 1.2. The limitations of classic a priori error analysis -- 1.3. What we do and don't do in this paper -- 1.4. A brief overview of related work -- 1.5. The plan of the paper -- Acknowledgments -- Chapter 2. A framework for a posteriori error estimation -- 2.1. The continuous problem and its discretization -- 2.2. The residual error -- 2.3. The dual problem and a formula for the error -- 2.4. The stability factors and the a posteriori error estimate -- Chapter 3. The size of the residual errors and stability factors -- 3.1. The size of the residual errors -- 3.2. The size of the stability factors -- 3.3. Application of the analysis to systems with constant diffusion -- 3.4. The a posteriori estimate and convergence -- Chapter 4. Computational error estimation -- 4.1. Two examples and a stability factor gallery -- 4.2. Choosing data for the dual problem -- 4.3. Linearization and the approximate dual problem -- 4.4. A test of the accuracy and reliability of the error estimate -- 4.5. Some details of implementation -- 4.6. Numerical results for the nine models -- Chapter 5. Preservation of invariant rectangles under discretization -- 5.1. Invariant rectangles and convergence -- 5.2. Preservation of a "fuzzy" invariant rectangle -- 5.3. Exact preservation of an invariant rectangle -- Chapter 6. Details of the analysis in Chapter 2 -- Chapter 7. Details of the analysis in Chapter 3 -- Chapter 8. Details of the analysis in Chapter 5 -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.