Points on Quantum Projectivizations.
Material type:
- text
- computer
- online resource
- 9781470403935
- 510 s;516.3/5
- QA564 -- .N96 2004eb
Intro -- Contents -- Chapter 1. Introduction -- 1.1. Geometric invariants in the absolute case -- 1.2. Bimodules and algebras -- 1.3. Geometric invariants in the relative case -- 1.4. Organization of the paper -- 1.5. Advice to the reader -- 1.6. Notation and conventions -- Chapter 2. Compatibilities on Squares -- 2.1. 2-Categories -- 2.2. The category of squares -- 2.3. Indexed categories -- 2.4. Squares of indexed categories -- Chapter 3. Construction of the Functor Γ[sub(n)] -- 3.1. Bimodules -- 3.2. Bimodule algebras -- 3.3. Lifting structures -- 3.4. The definition of Γ[sub(n)] -- Chapter 4. Compatibility with Descent -- 4.1. Local determination of a functor by a subfunctor -- 4.2. An algebraic description of maps into projectivizations -- 4.3. Free morphisms and free families -- 4.4. The proof that Γ[sub(n)] is compatible with descent -- Chapter 5. The Representation of Γ[sub(n)] for Low n -- 5.1. The representation of Γ[sub(0)] -- 5.2. The representation of Γ[sub(n)] for 0 < -- n < -- m -- Chapter 6. The Bimodule Segre Embedding -- 6.1. Statement of the main theorem -- 6.2. Construction of the bimodule Segre embedding -- 6.3. s is functorial -- 6.4. s is compatible with base change -- 6.5. s is associative -- Chapter 7. The Representation of Γ[sub(n)] for High n -- Bibliography -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.