ORPP logo
Image from Google Jackets

Points on Quantum Projectivizations.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2003Copyright date: ©2004Edition: 1st edDescription: 1 online resource (154 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470403935
Subject(s): Genre/Form: Additional physical formats: Print version:: Points on Quantum ProjectivizationsDDC classification:
  • 510 s;516.3/5
LOC classification:
  • QA564 -- .N96 2004eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1.1. Geometric invariants in the absolute case -- 1.2. Bimodules and algebras -- 1.3. Geometric invariants in the relative case -- 1.4. Organization of the paper -- 1.5. Advice to the reader -- 1.6. Notation and conventions -- Chapter 2. Compatibilities on Squares -- 2.1. 2-Categories -- 2.2. The category of squares -- 2.3. Indexed categories -- 2.4. Squares of indexed categories -- Chapter 3. Construction of the Functor Γ[sub(n)] -- 3.1. Bimodules -- 3.2. Bimodule algebras -- 3.3. Lifting structures -- 3.4. The definition of Γ[sub(n)] -- Chapter 4. Compatibility with Descent -- 4.1. Local determination of a functor by a subfunctor -- 4.2. An algebraic description of maps into projectivizations -- 4.3. Free morphisms and free families -- 4.4. The proof that Γ[sub(n)] is compatible with descent -- Chapter 5. The Representation of Γ[sub(n)] for Low n -- 5.1. The representation of Γ[sub(0)] -- 5.2. The representation of Γ[sub(n)] for 0 &lt -- n &lt -- m -- Chapter 6. The Bimodule Segre Embedding -- 6.1. Statement of the main theorem -- 6.2. Construction of the bimodule Segre embedding -- 6.3. s is functorial -- 6.4. s is compatible with base change -- 6.5. s is associative -- Chapter 7. The Representation of Γ[sub(n)] for High n -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1.1. Geometric invariants in the absolute case -- 1.2. Bimodules and algebras -- 1.3. Geometric invariants in the relative case -- 1.4. Organization of the paper -- 1.5. Advice to the reader -- 1.6. Notation and conventions -- Chapter 2. Compatibilities on Squares -- 2.1. 2-Categories -- 2.2. The category of squares -- 2.3. Indexed categories -- 2.4. Squares of indexed categories -- Chapter 3. Construction of the Functor Γ[sub(n)] -- 3.1. Bimodules -- 3.2. Bimodule algebras -- 3.3. Lifting structures -- 3.4. The definition of Γ[sub(n)] -- Chapter 4. Compatibility with Descent -- 4.1. Local determination of a functor by a subfunctor -- 4.2. An algebraic description of maps into projectivizations -- 4.3. Free morphisms and free families -- 4.4. The proof that Γ[sub(n)] is compatible with descent -- Chapter 5. The Representation of Γ[sub(n)] for Low n -- 5.1. The representation of Γ[sub(0)] -- 5.2. The representation of Γ[sub(n)] for 0 &lt -- n &lt -- m -- Chapter 6. The Bimodule Segre Embedding -- 6.1. Statement of the main theorem -- 6.2. Construction of the bimodule Segre embedding -- 6.3. s is functorial -- 6.4. s is compatible with base change -- 6.5. s is associative -- Chapter 7. The Representation of Γ[sub(n)] for High n -- Bibliography -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.