ORPP logo
Image from Google Jackets

Extending Intersection Homology Type Invariants to Non-Witt Spaces.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2002Copyright date: ©2002Edition: 1st edDescription: 1 online resource (101 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470403584
Subject(s): Genre/Form: Additional physical formats: Print version:: Extending Intersection Homology Type Invariants to Non-Witt SpacesDDC classification:
  • 510 s;514/.23
LOC classification:
  • QA612.32 -- .B36 2002eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1. History -- 2. Motivation -- 3. The Main Result: A Postnikov System of Lagrangian Structures -- 4. Consequences: Characteristic Classes -- 5. Ordered Resolutions - A Model Construction -- 6. Applications -- 7. Further Developments -- 8. Sign Questions -- 9. Some Remarks on Coefficients -- 10. Acknowledgments -- 11. Notation -- Chapter 2. The Algebraic Framework -- 1. The Lifting Obstruction -- 2. The Category of Self-Dual Sheaves Compatible with IH -- 3. Lagrangian Structures -- 4. Extracting Lagrangian Structures from Self-Dual Sheaves -- 5. Lagrangian Structures as Building Blocks for Self-Dual Sheaves -- 6. A Postnikov system -- Chapter 3. Ordered Resolutions -- 1. The Purpose of the Construction -- 2. Definitions -- 3. The PL Construction -- 4. Inductive Singularization of a Manifold -- Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)] -- 1. The Closed Objects -- 2. The Admissible Cobordisms -- 3. The Cobordism Invariance of σ -- 4. Relation to Witt Space Cobordism -- Chapter 5. Lagrangian Structures and Ordered Resolutions -- 1. Statement of Result -- 2. The inductive set-up -- 3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)] -- 4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ -- 5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self-dual -- 6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)] -- 7. The definition of L[sup(.)](X[sup((m+1))]) -- Appendix A. On Signs -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1. History -- 2. Motivation -- 3. The Main Result: A Postnikov System of Lagrangian Structures -- 4. Consequences: Characteristic Classes -- 5. Ordered Resolutions - A Model Construction -- 6. Applications -- 7. Further Developments -- 8. Sign Questions -- 9. Some Remarks on Coefficients -- 10. Acknowledgments -- 11. Notation -- Chapter 2. The Algebraic Framework -- 1. The Lifting Obstruction -- 2. The Category of Self-Dual Sheaves Compatible with IH -- 3. Lagrangian Structures -- 4. Extracting Lagrangian Structures from Self-Dual Sheaves -- 5. Lagrangian Structures as Building Blocks for Self-Dual Sheaves -- 6. A Postnikov system -- Chapter 3. Ordered Resolutions -- 1. The Purpose of the Construction -- 2. Definitions -- 3. The PL Construction -- 4. Inductive Singularization of a Manifold -- Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)] -- 1. The Closed Objects -- 2. The Admissible Cobordisms -- 3. The Cobordism Invariance of σ -- 4. Relation to Witt Space Cobordism -- Chapter 5. Lagrangian Structures and Ordered Resolutions -- 1. Statement of Result -- 2. The inductive set-up -- 3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)] -- 4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ -- 5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self-dual -- 6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)] -- 7. The definition of L[sup(.)](X[sup((m+1))]) -- Appendix A. On Signs -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.