ORPP logo
Image from Google Jackets

Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup Q(n).

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2012Copyright date: ©2012Edition: 1st edDescription: 1 online resource (148 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821892053
Subject(s): Genre/Form: Additional physical formats: Print version:: Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup Q(n)DDC classification:
  • 515/.724
LOC classification:
  • QA174.7.S96 -- .K54 2012eb
Online resources:
Contents:
Intro -- Contents -- Abstract -- Introduction -- Set up -- Projective representations and Sergeev algebra -- Crystal graph approach -- Schur functor approach -- Modular branching rules -- Connecting the two approaches -- Some tensor products over ( ) -- Strategy of the proof and organization of the paper -- Chapter 1. Preliminaries -- 1.1. General Notation -- 1.2. The supergroup ( ) and its hyperalgebra -- 1.3. Highest weight theory -- Chapter 2. Lowering operators -- 2.1. Definitions -- 2.2. Properties of ^{ }_{ , }({ }) and ^{ }_{ , }({ }) -- 2.3. Supercommutator [ _{ }^{ }, _{ , }^{ }( )] -- 2.4. Supercommutator [ ⱼ^{ }, _{ , }^{ }( )] -- 2.5. More on _{ }^{ } _{ , }^{ }( ) -- 2.6. Some coefficients -- Chapter 3. Some polynomials -- 3.1. Operators ^{ }_{ , } -- 3.2. Polynomials _{ , }^{ , }( ) -- 3.3. Polynomials ⁽¹⁾_{ , }( ) -- 3.4. Polynomials ⁽²⁾_{ , , , }( ) -- Chapter 4. Raising coefficients -- 4.1. Inductive formulas -- 4.2. The case of signed sets with only even elements -- 4.3. The case of signed sets with one odd element -- Chapter 5. Combinatorics of signature sequences -- 5.1. Marked signature sequences -- 5.2. Normal and good indices -- 5.3. Tensor conormal and tensor cogood indices -- 5.4. Removable and addable nodes for dominant -strict weights -- Chapter 6. Constructing ( -1)-primitive vectors -- 6.1. Construction: case [∏_{ &lt -- \ } ᵦ( )_{ }]=-^{ } -- 6.2. Construction: case [∏_{ &lt -- &lt -- } ᵦ( )_{ }]=-^{ } and ᵢ, _{ } are not both divisible by -- 6.3. Construction: case ᵢ1\ and [∏_{ &lt -- \ } _{0}( )_{ }]=+-^{ } -- 6.4. Extension: case _{ℎ}0\ , ᵢ1\ , [∏_{ℎ&lt -- \ } _{0}( )_{ }]=-^{ } -- 6.5. Extension: case ᵢ̸0\ , [∏_{ℎ&lt.
\ } ᵦ( )_{ }]=-^{ }, and _{ℎ}0\ , ᵢ1\ do not both hold -- 6.6. Extension: case _{ℎ}1\ , ᵢ0\ , and [∏_{ℎ&lt -- \ } _{0}(\ )_{ }]=+-^{ } -- Chapter 7. Main results on ( ) -- 7.1. Normal indices and primitive vectors -- 7.2. Criterion for existence of nonzero ( -1)-primitive vectors -- 7.3. The socle of the first level -- 7.4. Complement pairs -- 7.5. Primitive vectors in ( )⊗ * -- 7.6. Primitive vectors in ( )⊗ -- Chapter 8. Main results on projective representations of symmetric groups -- 8.1. Representations of Sergeev superalgebras -- 8.2. Proof of Theorem A -- 8.3. Proof of Theorem B -- 8.4. Projective representations of symmetric groups -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Abstract -- Introduction -- Set up -- Projective representations and Sergeev algebra -- Crystal graph approach -- Schur functor approach -- Modular branching rules -- Connecting the two approaches -- Some tensor products over ( ) -- Strategy of the proof and organization of the paper -- Chapter 1. Preliminaries -- 1.1. General Notation -- 1.2. The supergroup ( ) and its hyperalgebra -- 1.3. Highest weight theory -- Chapter 2. Lowering operators -- 2.1. Definitions -- 2.2. Properties of ^{ }_{ , }({ }) and ^{ }_{ , }({ }) -- 2.3. Supercommutator [ _{ }^{ }, _{ , }^{ }( )] -- 2.4. Supercommutator [ ⱼ^{ }, _{ , }^{ }( )] -- 2.5. More on _{ }^{ } _{ , }^{ }( ) -- 2.6. Some coefficients -- Chapter 3. Some polynomials -- 3.1. Operators ^{ }_{ , } -- 3.2. Polynomials _{ , }^{ , }( ) -- 3.3. Polynomials ⁽¹⁾_{ , }( ) -- 3.4. Polynomials ⁽²⁾_{ , , , }( ) -- Chapter 4. Raising coefficients -- 4.1. Inductive formulas -- 4.2. The case of signed sets with only even elements -- 4.3. The case of signed sets with one odd element -- Chapter 5. Combinatorics of signature sequences -- 5.1. Marked signature sequences -- 5.2. Normal and good indices -- 5.3. Tensor conormal and tensor cogood indices -- 5.4. Removable and addable nodes for dominant -strict weights -- Chapter 6. Constructing ( -1)-primitive vectors -- 6.1. Construction: case [∏_{ &lt -- \ } ᵦ( )_{ }]=-^{ } -- 6.2. Construction: case [∏_{ &lt -- &lt -- } ᵦ( )_{ }]=-^{ } and ᵢ, _{ } are not both divisible by -- 6.3. Construction: case ᵢ1\ and [∏_{ &lt -- \ } _{0}( )_{ }]=+-^{ } -- 6.4. Extension: case _{ℎ}0\ , ᵢ1\ , [∏_{ℎ&lt -- \ } _{0}( )_{ }]=-^{ } -- 6.5. Extension: case ᵢ̸0\ , [∏_{ℎ&lt.

\ } ᵦ( )_{ }]=-^{ }, and _{ℎ}0\ , ᵢ1\ do not both hold -- 6.6. Extension: case _{ℎ}1\ , ᵢ0\ , and [∏_{ℎ&lt -- \ } _{0}(\ )_{ }]=+-^{ } -- Chapter 7. Main results on ( ) -- 7.1. Normal indices and primitive vectors -- 7.2. Criterion for existence of nonzero ( -1)-primitive vectors -- 7.3. The socle of the first level -- 7.4. Complement pairs -- 7.5. Primitive vectors in ( )⊗ * -- 7.6. Primitive vectors in ( )⊗ -- Chapter 8. Main results on projective representations of symmetric groups -- 8.1. Representations of Sergeev superalgebras -- 8.2. Proof of Theorem A -- 8.3. Proof of Theorem B -- 8.4. Projective representations of symmetric groups -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.