ORPP logo
Image from Google Jackets

Eigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential Operators.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2008Copyright date: ©2008Edition: 1st edDescription: 1 online resource (194 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470405175
Subject(s): Genre/Form: Additional physical formats: Print version:: Eigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential OperatorsDDC classification:
  • 515/.7242
LOC classification:
  • QA193 -- .L63 2008eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1.1. Definitions and Notations -- 1.2. Summary of Results -- Chapter 2. Birkhoff Approximate Solutions -- 2.1. Birkhoff Approximate Solutions -- 2.2. Special Case: n = 2 -- Chapter 3. The Approximate Characteristic Determinant: Classification -- 3.1. The Approximate Characteristic Determinant -- 3.2. Classification for n Even -- 3.3. Classification for n Odd -- Chapter 4. Asymptotic Expansion of Solutions -- 4.1. Expansions for n Even -- 4.2. Expansions for n Odd -- Chapter 5. The Characteristic Determinant -- 5.1. The Characteristic Determinant for n Even -- 5.2. The Characteristic Determinant for n Odd -- 5.3. Special Case: n = 2 -- Chapter 6. The Green's Function -- 6.1. The Green's Function for n Even -- 6.2. The Green's Function for n Odd -- Chapter 7. The Eigenvalues for n Even -- 7.1. Case 1. p = q, ξ[sub(0)] ≠ η[sub(o)] -- 7.2. Case 2. p = q, ξ[sub(0) = η[sub(o)] -- 7.3. Case 3. p &lt -- q -- Chapter 8. The Eigenvalues for n Odd -- 8.1. Case 1. p = q -- 8.2. Case 2. p &lt -- q -- 8.3. Case 3. p &gt -- q -- Chapter 9. Completeness of the Generalized Eigenfunctions -- 9.1. Completeness for n Even -- 9.2. Completeness for n Odd -- Chapter 10. The Case L = T, Degenerate Irregular Examples -- 10.1. The Case L = T -- 10.2. Two Degenerate Irregular Examples -- 10.3. The Case n = 4, L = T -- Chapter 11. Unsolved Problems -- Chapter 12. Appendix -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1.1. Definitions and Notations -- 1.2. Summary of Results -- Chapter 2. Birkhoff Approximate Solutions -- 2.1. Birkhoff Approximate Solutions -- 2.2. Special Case: n = 2 -- Chapter 3. The Approximate Characteristic Determinant: Classification -- 3.1. The Approximate Characteristic Determinant -- 3.2. Classification for n Even -- 3.3. Classification for n Odd -- Chapter 4. Asymptotic Expansion of Solutions -- 4.1. Expansions for n Even -- 4.2. Expansions for n Odd -- Chapter 5. The Characteristic Determinant -- 5.1. The Characteristic Determinant for n Even -- 5.2. The Characteristic Determinant for n Odd -- 5.3. Special Case: n = 2 -- Chapter 6. The Green's Function -- 6.1. The Green's Function for n Even -- 6.2. The Green's Function for n Odd -- Chapter 7. The Eigenvalues for n Even -- 7.1. Case 1. p = q, ξ[sub(0)] ≠ η[sub(o)] -- 7.2. Case 2. p = q, ξ[sub(0) = η[sub(o)] -- 7.3. Case 3. p &lt -- q -- Chapter 8. The Eigenvalues for n Odd -- 8.1. Case 1. p = q -- 8.2. Case 2. p &lt -- q -- 8.3. Case 3. p &gt -- q -- Chapter 9. Completeness of the Generalized Eigenfunctions -- 9.1. Completeness for n Even -- 9.2. Completeness for n Odd -- Chapter 10. The Case L = T, Degenerate Irregular Examples -- 10.1. The Case L = T -- 10.2. Two Degenerate Irregular Examples -- 10.3. The Case n = 4, L = T -- Chapter 11. Unsolved Problems -- Chapter 12. Appendix -- Bibliography -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.