ORPP logo
Image from Google Jackets

Categories of Highest Weight Modules : Applications to Classical Hermitian Symmetric Pairs.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1987Copyright date: ©1987Edition: 1st edDescription: 1 online resource (102 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470407834
Subject(s): Genre/Form: Additional physical formats: Print version:: Categories of Highest Weight ModulesDDC classification:
  • 512/.2
LOC classification:
  • QA3 -- .E575 1987eb
Online resources:
Contents:
Intro -- Table of Contents -- 1. Introduction and summary of results -- Part I: Categories of Highest Weight Modules -- 2. Notation -- 3. Preliminary results -- 4. Reduction of singularities -- 5. The Zuckerman derived functors -- 6. An equivalence of categories -- 7. A second equivalence of categories -- Part II: Highest Weight Modules for Hermitian Symmetric Pairs -- 8. Statement of the Main Results -- 9. Additional notation and preliminary results -- 10. Wall shifting -- 11. Induction from lower rank -- 12. Proof of Theorem 8.4 -- 13. Proof of Theorem 8.5 -- 14. Projective resolutions and Ext -- 15. Kazhdan-Lusztig polynomials -- 16. Decompositions of U(u[sup(-)])-free self-dual g-modules -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Table of Contents -- 1. Introduction and summary of results -- Part I: Categories of Highest Weight Modules -- 2. Notation -- 3. Preliminary results -- 4. Reduction of singularities -- 5. The Zuckerman derived functors -- 6. An equivalence of categories -- 7. A second equivalence of categories -- Part II: Highest Weight Modules for Hermitian Symmetric Pairs -- 8. Statement of the Main Results -- 9. Additional notation and preliminary results -- 10. Wall shifting -- 11. Induction from lower rank -- 12. Proof of Theorem 8.4 -- 13. Proof of Theorem 8.5 -- 14. Projective resolutions and Ext -- 15. Kazhdan-Lusztig polynomials -- 16. Decompositions of U(u[sup(-)])-free self-dual g-modules -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.