Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary.
Material type:
- text
- computer
- online resource
- 9781470401771
- 515/.353
- QA614.9 -- .K575 1996eb
Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics -- 2.1. Symplectic linear algebra -- 2.2. Analytic families of Lagrangians -- 2.3. Dirac operators -- Chapter 3. Eigenvalue and tangential Lagrangians -- 3.1. Eigenvalue Lagrangians -- 3.2. Tangential Lagrangians and Atiyah-Patodi-Singer eigenvectors -- 3.3. Extended L[sup(2)] eigenvectors on X(∞) -- Chapter 4. Small extended L[sup(2)] eigenvalues -- 4.1. Discreteness near 0 of extended L[sup(2)] eigenvalues -- 4.2. Small extended L[sup(2)]eigenvalues and eigenvectors deform analytically -- 4.3. Relation to weighted L[sup(2)] eigenvalues -- Chapter 5. Dynamic properties of eigenvalue Lagrangians on N[sup(R)sub(& -- #955)] -- as R → ∞ -- Chapter 6. Properties of analytic deformations of extended L[sup(2)] eigenvalues -- 6.1. The three types of extended L[sup(2)] eigenvectors -- 6.2. The effect of the different choices of L[sup(2)] on the eigenvalues and the non-stability of L[sup(2)]eigenvalues -- 6.3. Derivatives of extended L[sup(2)] eigenvectors -- 6.4. The Hermitian forms controlling the deformations of extended L[sup(2)] eigenvalues have signature independent of R -- Chapter 7. Time derivatives of extended L[sup(2)] and APS eigenvalues -- 7.1. Deformations of APS and extended L[sup(2)] eigenvalues coincide -- 7.2. Proof of Theorem 7.1 -- Bibliography.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.