ORPP logo
Image from Google Jackets

Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with Boundary.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1996Copyright date: ©1996Edition: 1st edDescription: 1 online resource (73 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470401771
Subject(s): Genre/Form: Additional physical formats: Print version:: Analytic Deformations of the Spectrum of a Family of Dirac Operators on an Odd-Dimensional Manifold with BoundaryDDC classification:
  • 515/.353
LOC classification:
  • QA614.9 -- .K575 1996eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics -- 2.1. Symplectic linear algebra -- 2.2. Analytic families of Lagrangians -- 2.3. Dirac operators -- Chapter 3. Eigenvalue and tangential Lagrangians -- 3.1. Eigenvalue Lagrangians -- 3.2. Tangential Lagrangians and Atiyah-Patodi-Singer eigenvectors -- 3.3. Extended L[sup(2)] eigenvectors on X(∞) -- Chapter 4. Small extended L[sup(2)] eigenvalues -- 4.1. Discreteness near 0 of extended L[sup(2)] eigenvalues -- 4.2. Small extended L[sup(2)]eigenvalues and eigenvectors deform analytically -- 4.3. Relation to weighted L[sup(2)] eigenvalues -- Chapter 5. Dynamic properties of eigenvalue Lagrangians on N[sup(R)sub(&amp -- #955)] -- as R → ∞ -- Chapter 6. Properties of analytic deformations of extended L[sup(2)] eigenvalues -- 6.1. The three types of extended L[sup(2)] eigenvectors -- 6.2. The effect of the different choices of L[sup(2)] on the eigenvalues and the non-stability of L[sup(2)]eigenvalues -- 6.3. Derivatives of extended L[sup(2)] eigenvectors -- 6.4. The Hermitian forms controlling the deformations of extended L[sup(2)] eigenvalues have signature independent of R -- Chapter 7. Time derivatives of extended L[sup(2)] and APS eigenvalues -- 7.1. Deformations of APS and extended L[sup(2)] eigenvalues coincide -- 7.2. Proof of Theorem 7.1 -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics -- 2.1. Symplectic linear algebra -- 2.2. Analytic families of Lagrangians -- 2.3. Dirac operators -- Chapter 3. Eigenvalue and tangential Lagrangians -- 3.1. Eigenvalue Lagrangians -- 3.2. Tangential Lagrangians and Atiyah-Patodi-Singer eigenvectors -- 3.3. Extended L[sup(2)] eigenvectors on X(∞) -- Chapter 4. Small extended L[sup(2)] eigenvalues -- 4.1. Discreteness near 0 of extended L[sup(2)] eigenvalues -- 4.2. Small extended L[sup(2)]eigenvalues and eigenvectors deform analytically -- 4.3. Relation to weighted L[sup(2)] eigenvalues -- Chapter 5. Dynamic properties of eigenvalue Lagrangians on N[sup(R)sub(&amp -- #955)] -- as R → ∞ -- Chapter 6. Properties of analytic deformations of extended L[sup(2)] eigenvalues -- 6.1. The three types of extended L[sup(2)] eigenvectors -- 6.2. The effect of the different choices of L[sup(2)] on the eigenvalues and the non-stability of L[sup(2)]eigenvalues -- 6.3. Derivatives of extended L[sup(2)] eigenvectors -- 6.4. The Hermitian forms controlling the deformations of extended L[sup(2)] eigenvalues have signature independent of R -- Chapter 7. Time derivatives of extended L[sup(2)] and APS eigenvalues -- 7.1. Deformations of APS and extended L[sup(2)] eigenvalues coincide -- 7.2. Proof of Theorem 7.1 -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.