ORPP logo
Image from Google Jackets

Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1985Copyright date: ©1985Edition: 1st edDescription: 1 online resource (63 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470407322
Subject(s): Genre/Form: Additional physical formats: Print version:: Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi PolynomialsDDC classification:
  • 515/.55
LOC classification:
  • QA3 -- .A854 1985eb
Online resources:
Contents:
Intro -- Table of Contents -- 1. Introduction -- Recurrence relation -- 2. The orthogonality relation -- A q-beta integral -- The absolute continuous orthogonality -- 3. A quadratic transformation -- 4. Some interesting special cases -- Continuous q-ultraspherical polynomials -- Continuous q-Jacobi polynomials -- Continuous q-Laguerre polynomials -- Al-Salam-Chihara polynomials -- Generalized Tchebycheff polynomials -- Continuous q-symmetric Hahn polynomials -- q-Meixner-Pollaczek polynomials -- 5. Divided difference operators -- Second order difference equation -- Rodrigues type formula -- 6. Connection coefficients -- 7. Zeros and inequalitites -- 8. Remarks -- Appendix -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Table of Contents -- 1. Introduction -- Recurrence relation -- 2. The orthogonality relation -- A q-beta integral -- The absolute continuous orthogonality -- 3. A quadratic transformation -- 4. Some interesting special cases -- Continuous q-ultraspherical polynomials -- Continuous q-Jacobi polynomials -- Continuous q-Laguerre polynomials -- Al-Salam-Chihara polynomials -- Generalized Tchebycheff polynomials -- Continuous q-symmetric Hahn polynomials -- q-Meixner-Pollaczek polynomials -- 5. Divided difference operators -- Second order difference equation -- Rodrigues type formula -- 6. Connection coefficients -- 7. Zeros and inequalitites -- 8. Remarks -- Appendix -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.