ORPP logo
Image from Google Jackets

Subregular Germ of Orbital Integrals.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1992Copyright date: ©1992Edition: 1st edDescription: 1 online resource (161 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470409029
Subject(s): Genre/Form: Additional physical formats: Print version:: Subregular Germ of Orbital IntegralsDDC classification:
  • 512/.74
LOC classification:
  • QA247 -- .H354 1992eb
Online resources:
Contents:
Intro -- Contents -- Introduction -- I. Basic Constructions -- 1. Background Information -- 2. The Igusa Variety -- 3. The Variety S[sup(0)] -- 4. The Morphism S[sub(1)] → S -- 5. Cocycles -- 6. The Data -- II. Coordinates and Coordinate Relations -- 1. The Coordinates x(W,(β) -- 2. The Coordinates ω(β) -- 3. The Extension of ω(β) to Y -- 4. The Coordinate Ring -- 5. A Computation of t[sup(-1)]n[sup(-1)]tn -- 6. A Technical Lemma -- 7. Application to G[sub(2)] -- 8. The Functions n[sub(γ)] -- 9. The Fundamental Divisors on Y[sub(Γ)] -- III. Groups of Rank Two -- 1. Zero Patterns -- 2. Coordinate Relations -- 3. Exclusion of Spurious Divisors (rank two) -- IV. The Subregular Spurious Divisor -- 1. Subregular Unipotent Conjugacy Classes -- 2. Exclusion of Spurious Divisors -- 3. The graph Γ[sub(0)] -- 4. The Modified Star -- 5. Weyl Chambers -- 6. A Lemma about Cells -- 7. Contact -- 8. Assumption 3.1 -- V. The Subregular Fundamental Divisor -- 1. Regularity -- 2. Igusa Theory and Measures -- 3. Principal Value Integrals at Points of E[sub(α)] ∩ E[sub(β)] -- 4. Igusa Data for Interchanged Divisors -- 5. Transition Functions -- 6. Coordinate Relations -- VI. Rationality and Characters -- 1. Rationality -- 2. The Characters k(E[sub(α)]) -- 3. m[sub(k)](e) and the Vanishing of Integrals -- VII. Applications to Endoscopic Groups -- 1. Endoscopic Groups -- 2. Characters, Centers, and Endoscopic Groups -- 3. Compatibility of Characters -- 4. Stable Orbital Integrals -- 5. Unitary Groups -- References -- Notation and Conventions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Introduction -- I. Basic Constructions -- 1. Background Information -- 2. The Igusa Variety -- 3. The Variety S[sup(0)] -- 4. The Morphism S[sub(1)] → S -- 5. Cocycles -- 6. The Data -- II. Coordinates and Coordinate Relations -- 1. The Coordinates x(W,(β) -- 2. The Coordinates ω(β) -- 3. The Extension of ω(β) to Y -- 4. The Coordinate Ring -- 5. A Computation of t[sup(-1)]n[sup(-1)]tn -- 6. A Technical Lemma -- 7. Application to G[sub(2)] -- 8. The Functions n[sub(γ)] -- 9. The Fundamental Divisors on Y[sub(Γ)] -- III. Groups of Rank Two -- 1. Zero Patterns -- 2. Coordinate Relations -- 3. Exclusion of Spurious Divisors (rank two) -- IV. The Subregular Spurious Divisor -- 1. Subregular Unipotent Conjugacy Classes -- 2. Exclusion of Spurious Divisors -- 3. The graph Γ[sub(0)] -- 4. The Modified Star -- 5. Weyl Chambers -- 6. A Lemma about Cells -- 7. Contact -- 8. Assumption 3.1 -- V. The Subregular Fundamental Divisor -- 1. Regularity -- 2. Igusa Theory and Measures -- 3. Principal Value Integrals at Points of E[sub(α)] ∩ E[sub(β)] -- 4. Igusa Data for Interchanged Divisors -- 5. Transition Functions -- 6. Coordinate Relations -- VI. Rationality and Characters -- 1. Rationality -- 2. The Characters k(E[sub(α)]) -- 3. m[sub(k)](e) and the Vanishing of Integrals -- VII. Applications to Endoscopic Groups -- 1. Endoscopic Groups -- 2. Characters, Centers, and Endoscopic Groups -- 3. Compatibility of Characters -- 4. Stable Orbital Integrals -- 5. Unitary Groups -- References -- Notation and Conventions.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.