Harmonic Analysis for Anisotropic Random Walks on Homogeneous Trees.
Material type:
- text
- computer
- online resource
- 9781470401108
- 512/.55
- QA387 -- .F543 1994eb
Intro -- Contents -- List of Figures -- Index of Notation -- Abstract -- Chapter 0. Introduction -- Chapter 1. The Green Function -- 1. Random Walks on a Tree -- 2. The Method of Paths -- 3. The Nearest Neighbor Case -- 4. The Case of a Finitely Supported Measure -- 5. Algebraicity of the Green Function -- 6. Notes and Remarks -- Chapter 2. The Spectrum and the Plancherel Measure -- 1. The Spectrum of the Random Walk in l[sup(r)]{G) -- 2. The l[sup(2)]-spectrum and the Real l[sup(1)]-spectrum -- 3. The Plancherel Formula -- 4. Notes and Remarks -- Chapter 3. Representations and their Realization on the Boundary -- 1. Boundary Theory for Eigenfunctions of the Random Walk -- 2. The Principal Series -- 3. The Complementary Series -- 4. Notes and Remarks -- Chapter 4. Irreducibility and Inequivalence -- 1. Irreducibility -- 2. Inequivalence -- 3. Notes and Remarks -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.