Expository Lectures on Representation Theory.
Material type:
- text
- computer
- online resource
- 9781470414412
- 512/.46
- QA251.5 -- .M28 2014eb
Intro -- Preface -- Fine and coarse moduli spaces in the representation theory of finite dimensional algebras -- 1. Introduction and notation -- Acknowledgements -- 2. Affine and projective parametrizations of the Λ-modules of dimension vector -- 3. Quotient varieties on the geometric market-generalities and representation-theoretic particulars -- 4. Rendering Riemann's classification philosophy more concrete -- 5. Approach A: King's adaptation of Mumford stability: Focusing on the objects which are (semi-)stable relative to a weight function -- 6. Approach B. Slicing Λ- into strata with fixed top -- 7. Slicing Λ- more finely, in terms of radical layerings Representation-theoretically optimal coordinatization of ^{ }_{ } -- 8. Problems. Pros and Cons of Approach B -- References -- More Representations of Wild Quivers -- Introduction -- 1. Preliminaries -- 2. Spectral properties of the Coxeter transformations -- 3. Elementary modules -- 4. The regular components -- 5. Partial tilting modules -- 6. The perpendicular category of a rigid regular module -- 7. A functor between categories of regular modules -- 8. Generation of cocones -- 9. Factorisations of morphisms -- References -- Phantom Morphisms and Salce's Lemma -- 1. Introduction -- 2. Preliminaries -- 3. Salce's Lemma -- 4. The Flat Cover Conjecture -- 5. Phantom Morphisms -- 6. Salce's Lemma for Ideals -- 7. Subfunctors of -- 8. Examples -- 9. Quasi-Frobenius Rings -- 10. The Powers of the Phantom Ideal -- References -- Morita theory, revisited -- 1. Introduction -- 2. Notations -- 3. Morita theory -- 4. The Lambek theorem -- 5. Self-dual idempotents and Morita algebras -- References -- Universal deformation rings of group representations, with an application of Brauer's generalized decomposition numbers -- 1. Introduction -- 2. Mazur's deformation theory.
3. Universal deformation rings of modules for finite groups -- 4. Brauer's generalized decomposition numbers and universal deformation rings -- References -- Derived Representation Schemes and Noncommutative Geometry -- 1. Introduction -- Notation and Conventions -- 2. Model categories -- 3. Representation Schemes -- 4. Cyclic Homology and Higher Trace Maps -- 5. Abelianization of the Representation Functor -- 6. Examples -- Acknowledgements -- References -- Classifying torsion pairs for tame hereditary algebras and tubes -- Introduction -- 1. Torsion pairs -- 2. Torsion pairs and tilting for finite dimensional algebras -- 3. Big cotilting modules for finite dimensional algebras -- 4. Tubes -- 5. Combinatorial classifications -- References -- Problems solved by using degrees of irreducible morphisms -- Introduction -- 1. Preliminaries and Notation -- 2. On degrees -- 3. Characterizations of the notion of degree -- 4. Composite of irreducible morphisms and the powers of the radical of a module category -- 5. Degrees and finite representation type of an algebra -- 6. On the bound of the radical of a module category -- References -- Arc diagram varieties -- 1. Introduction -- Acknowledgement -- 2. The stratification -- 3. Partially ordered sets -- 4. An algorithmic approach -- 5. Three excursions -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.