Gossamer Spacecraft : Membrane And Inflatable Structures Technology For Space Applications.
Material type:
- text
- computer
- online resource
- 9781600864421
- 629.1 s;629.47
- TL940 -- .G67 2001eb
Cover -- Title -- Copyright -- Table of Contents -- Preface -- Chapter 1. Overview of Gossamer Structures -- I. Background -- II. Applications -- A. Solar Arrays -- B. Communication Systems -- C. Human Habitats -- D. Planetary Surface Exploration -- E. Radar and Reflect Arrays -- F. Solar Concentrators -- G. Solar Shades -- III. Membranes for Gossamer Structures -- IV. Rigidization Technology -- V. Analysis and Modeling of Gossamer Structures -- VI. Adaptive, Smart, and Multifunctional Gossamer Systems -- A. Adaptive Compensation of Membrane Reflectors -- B. Multifunctional Membranes -- C. Smart Structures -- VII. Summary -- Acknowledgments -- Chapter 2. History of Relevant Inflatable High-Precision Space Structures Technology Developments -- I. Introduction -- II. Goodyear's Inflatable Structures -- A. Inflatable Search Radar Antenna -- B. Radar Calibration Sphere -- C. Lenticular Inflatable Parabolic Reflector -- D. Echo Balloons -- E. Contraves Inflatable Structures -- F. Reflector Antenna Concepts for Very Large Baseline Interferometry and Land Mobile Communications -- G. Telescope Sunshade Support Structure -- III. L' Garde Inc.'s Inflatable Space Structures -- A. L' Garde Inc.'s Simulated Decoys -- B. Large Offset Reflector Structure -- C. Inflatable Antenna Experiment -- IV. ILC Dover's Inflatable Space Structures -- A. Large Solar-Array Structure -- V. Other Organizations with Inflatable Space Structures Technology Capability -- References -- Chapter 3. Mechanics of Membrane Structures -- Nomenclature -- I. Introduction -- A. Definition and Unique Behavior of Membranes -- B. Tensor Analysis -- C. Coordinate Systems and Configurations -- II. Kinematics of Deformation -- A. Motion and Deformation -- B. Deformation Gradient, Stretch, and Polar Decomposition -- C. Strain Definitions -- D. Deformation and Strain Rate.
III. Stress and Balance Laws -- A. Concept of Stress -- B. Stress Definitions -- C. Mass Balance -- D. Momentum Balance -- E. Energy Balance -- F. Conjugate Stress and Strain -- IV. Constitutive Equations -- A. Introduction -- B. Thermomechanics -- C. Thermomechanic Field Theory -- D. Constitutive Relations for Elastic Solids and Sheets -- E. Constitutive Laws for Viscoelastic Materials -- F. Bodner-Partom-Rubin Model -- G. Fabrics -- V. Approximations -- A. Approximations in the Era of Computational Mechanics -- B. Nonlinear Nature of Membrane Problems -- C. Approximations in the Context of the Governing Equations -- D. Example -- E. On Accuracy and Modeling -- VI. Analysis of Wrinkled Membranes -- A. Introduction -- B. Tension-Field Modeling via a Penalty Parameter Modified Constitutive Law -- VII. Experimental Analysis -- A. Unique Challenges for Experimental Analysis of Membrane Structures -- B. Static Deformation Measurement -- C. Dynamic Displacement Measurement -- D. Thermal Measurements -- References -- Chapter 4. Fundamentals of Membrane Optics -- Nomenclature -- Glossary -- I. Introduction -- II. Overview -- III. Mechanical Theory and Modeling of Membrane Optics -- A. Introduction -- B. Classical Elasticity -- C. Recent Extensions -- IV. Achieving Optical Figure and Enhancing Optical Performance -- A. Figure Achievement and Maintenance -- B. Adaptive Optics Correction Techniques -- V. Experimental Observations and Results -- A. Metrology -- B. Experimental Results -- VI. Summary -- Acknowledgments -- References -- Chapter 5. Modeling the Deployment of Inflatable Space Structures -- I. Introduction -- II. Review of Relevant Literature on Flexible Structure Deployment Modeling -- A. Deployment Modeling and Testing of Conventional Aerospace Structures -- B. Tethers: Extremely Large, Flexible Space Structures.
C. Deployment of Balloons, Parachutes, Airbags, and Other Inflating Structures -- D. Inflation Gas-Structure Interaction -- III. Review of Relevant Literature on Inflated Structure Deployment -- A. Background -- B. Design for Controllable Deployment -- C. Ground and Flight Testing of Space Inflatables -- IV. Deployment Modeling of Inflated Structures -- A. Scale Modeling -- B. Finite Element Modeling: Gas Flow in Flexible Structures -- C. Modeling the Deployment of Rolled Tubes -- D. Nonlinear Hinge Models -- V. Summary -- Acknowledgments -- References -- Chapter 6. Materials for Inflatables in Space -- I. Introduction -- II. Commercial Films -- III. Emerging Materials -- IV. Summary -- References -- Chapter 7. Rigidization Mechanisms and Materials -- I. Introduction -- II. Thermally Cured Thermoset Composites -- III. UV-Cured Thermoset Composites -- IV. Inflation Gas Reaction Thermoset Composites -- V. Second-Order Transition Change and Shape Memory Polymer Thermoplastic Composites -- VI. Plasticizer or Solvent Boil-Off Thermoplastic Composites -- VII. Foam Rigidization -- VIII. Aluminum Laminates -- IX. Summary -- References -- Chapter 8. Atomic Oxygen Effects on Space Inflatable Materials -- I. Introduction -- II. Space Environment and Atomic Oxygen -- III. Erosion of Polymers by Atomic Oxygen -- IV. AO-Resistant Polymers -- V. AO Test Facilities -- VI. Conclusions -- Acknowledgments -- References -- Chapter 9. Solar Ultraviolet and Space Radiation Effects on Inflatable Materials -- I. Introduction -- II. Space Environment Considerations for Materials Effects -- III. Predictions of Radiation Levels in Thin-Sheet Membranes -- IV. Thin-Sheet Material Results -- V. Simulation of Space Environment Effects -- VI. Summary -- References -- Chapter 10. Electromagnetic Properties of Thin Metallized Materials -- I. Introduction.
II. Electromagnetic Properties of Thin Metallic Layers -- A. Basic Properties of Thin Metallic Layers in Terms of Bulk Properties -- B. Reflective Properties of Thin Metallic Layers in Terms of Basic Properties -- III. EM Properties of Materials for Remote Sensing Applications -- A. Overview of Remote Sensing Concepts -- B. Emissivity Requirements for Radiometers -- IV. Summary -- References -- Chapter 11. Multidisciplinary Testing of Thin-Film Inflatable Structures -- Nomenclature -- I. Introduction -- II. Program Requirements for Inflatable Structures at Marshall Space Flight Center -- III. Unique Test Hardware and Methodologies for Inflatable Spacecraft Structural Testing -- A. Application of Laser Vibrometers -- B. Excitation Techniques -- C. Linearity Assessment using Sinusoidal Sweeps -- D. Boundary Conditions for Modal Tests -- E. Data Acquisition and Modal Parameter Identification -- IV. Inflatable Strut Modal and Static Tests -- A. ModalTests -- B. Static Tests -- V. Inflatable Concentrator Modal Tests -- A. Preliminary Modal Tests -- B. Thermal-Vacuum Modal Test -- C. Off-Axis Inflatable Concentrator Modal Test -- VI. Inflatable Concentrator Thermal Tests -- A. Test Configuration and Approach -- B. Results -- C. Summary of Thermal Tests -- VII. Observations of Inflatable Structure Behavior from Testing and Modeling -- A. Structural Behavior of Inflated Cylinders or Struts -- B. Observations of Structural Behavior of Inflatable Solar Concentrator Assemblies -- IV. Summary -- References -- Chapter 12. Rigidization Materials Testing -- I. Introduction -- II. Ground Environment -- III. Launch and Predeployment Environment -- IV. Deployment Environment Including Rigidization -- V. Deployed Condition Environment -- VI. Summary -- References -- Bibliography -- Chapter 13. Electromagnetic Testing of Thin Metallized Materials -- I. Introduction.
II. Vector-Network-Analyzer Measurements of Thin-Film Materials -- A. Waveguide Measurement Technique -- B. Free-Space Transmission Measurement Technique -- C. Metallized Thin-Film Study -- III. Radiometric Measurement Approach -- A. Measurement Setup -- B. Measurement Results -- IV. Summary -- References -- Chapter 14. Inflation Systems -- I. Introduction -- II. Historical Perspective -- III. Near-Term Inflation Systems -- A. Tanked-Gas Systems -- B. Phase-Change Systems -- C. Chemical Gas-Generation Systems -- IV. Midterm and Far-Term Inflation Systems -- A. Midterm Applications -- B. Midterm Inflation Systems -- C. Far-Term Applications -- D. Far-Term Inflation Systems -- V. Summary: Operational Issues and General Design Considerations -- References -- Chapter 15. Deployment Control Mechanisms and Packaging Methodologies for Inflatable and Membrane Space Structures -- I. Introduction -- II. System Requirements for Controlled Deployment Mechanisms -- III. Deployment Control Devices -- A. Compartmentalization -- B. Columnation Device -- C. Roll-Up Devices -- D. Velcro Roll-Up Devices -- E. Constant Force Spring Roll-Up Devices -- F. Rolling Brake Mechanism -- G. Packaging Methodology -- IV. Summary -- References -- Chapter 16. Mission Concepts and Systems: Space Inflatable Radiometer System Concept -- I. Introduction -- II. Background -- III. Need for a Space Experiment -- IV. Inflatable Structures -- V. Radiometer Mission Concept -- VI. Radiometer Mission Flight Experiment -- VII. Radiometer Mission Concept Experiment Subsystems -- VIII. Supporting Technology Discipline Areas -- A. Structural Analysis -- B. Material Technology -- C. Data Analysis, Experiment Performance: Science -- IX. Summary -- References -- Chapter 17. Radar Applications -- I. Introduction -- II. Roll-Up Inflatable SAR Antenna -- A. L-Band SAR Antenna.
B. Roll-Up Inflatable SAR Concept.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.