ORPP logo
Image from Google Jackets

Scramjet Propulsion.

By: Contributor(s): Material type: TextTextSeries: Progress in Astronautics and AeronauticsPublisher: Reston : American Institute of Aeronautics and Astronautics, 2000Copyright date: ©2000Edition: 1st edDescription: 1 online resource (1324 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781600864414
Subject(s): Genre/Form: Additional physical formats: Print version:: Scramjet PropulsionDDC classification:
  • 629.1 s;629.134/3535
LOC classification:
  • TL709.3.S37 -- S37 2000eb
Online resources:
Contents:
Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- I. International Efforts -- II. Inlets, Combustors, and Fuels -- III. Overall Systems -- IV. Future Developments -- V. Closing Comments -- References -- Chapter 1 Scramjet Testing in the T3 and T4 Hypersonic Impulse Facilities -- Nomenclature -- I. History, Aims, and Developments -- II. Facility and Instrumentation -- III. Fuel-Injection Systems -- A. Wall-Injection Combustion Results -- B. Wall-Injection Film-Cooling Results -- C. Port-Injection Results -- D. Central Injection -- IV. Combustion/Mixing Processes -- A. Mixing Controlled Combustion -- B. Kinetically Controlled Combustion -- C. Shock-Induced Ignition -- D. Shock-Induced Mixing -- V. Simple Theoretical Combustor and Thrust Model -- VI. Experimental Results of Specific Impulse -- VII. Effects of Atomic Oxygen and Nitric Oxide in the Freestream -- VIII. Different Fuels -- A. Hydrocarbon Fuels -- B. Silane-Enriched Fuels -- IX. Integrated Scramjet Measurements -- X. Skin-Friction Measurements -- XI. Discussion and Review -- Acknowledgments -- Bibliography -- Chapter 2 Scramjet Developments in France -- I. Historical Overview -- II. Basic Research on Diffusion Flame Combustion (1962-1967) -- A. Combustion in a Cylindrical Duct -- B. Freejet Test -- C. Combustion in a Divergent Duct -- D. Synthesis -- III. ESOPE Program (1966-1973) -- A. Origin and Principal Aims -- B. Studies Results -- C. Synthesis -- IV. Studies on Shock-Induced Combustion -- A. Principle -- B. ENSMA and LATECAM Studies -- V. Prepha Program (1992-1997) -- A. Origin and Principal Aims -- B. System Studies -- C. Development of New Test Facilities -- D. Numerical Means -- E. Development of Scramjet Components -- Color Plates -- F. Materials and Cooled Structures -- G. Flight Testing -- VI. Perspectives -- A. Space Application -- B. Missile Application.
References -- Chapter 3 Scramjet Investigations Within the German Hypersonics Technology Program (1993-1996) -- I. German Hypersonics Technology Program and Scramjet-Related Activities -- A. German Hypersonics Technology Program -- B. Scramjet Related Activities Within the HTP -- II. Theoretical Investigations for Scramjet Intake Designs -- A. Activities at Dasa-MT633 -- B. Activities at RWTH Aachen -- III. Theoretical and Experimental Investigations of Scramjet Combustion at TsAGI and DLR Lampoldshausen -- A. Combustor Model Design -- B. Fuel-Injection Modules -- C. Test Results -- IV. Freejet Wind-tunnel Testing of Scramjet Propulsion Systems at TsAGI -- A. Scramjet Propulsion System Model Concept -- B. Testing Focus -- C. Test Results -- V. Considerations for Flight Testing Small-Scale Scramjet Modules Using the RADUGA-D2 Flying Testbed -- A. Objectives for Flight Testing -- B. RADUGA-D2 Flying Testbed -- C. Flight Test Trajectory and Integration of Scramjet in the RADUGA-D2 -- References -- Chapter 4 Scramjet Engine Research at the National Aerospace Laboratory in Japan -- Nomenclature -- I. Introduction -- II. Engine Model -- A. Inlet -- B. Struts and Ramps -- C. Isolator, Fuel Injector, and Combustor -- D. Combustor Downstream Section and Nozzle -- E. LH[sub(2)]-Cooled Model -- III. Test Facility -- A. Outline -- B. Components -- C. Calibration of the RJTF -- IV. Measurements -- A. General Features -- B. Engine Exit Survey -- V. 5 Test Results -- A. General Features of the Engine Operation -- B. Mach 4 Tests -- C. Mach 6 Tests -- D. Mach 8 Tests -- E. Liquid-Hydrogen-Cooled Engine Tests -- VI. Supplementary Studies for Engine Testing -- A. Computational Fluid Dynamics -- B. Chemical Quenching in Gas-Sampling Probes -- C. Subscale Wind-Tunnel Testing -- D. Reaction Kinetic Studies on the Scramjet -- VII. Conclusions and Future Prospects.
Acknowledgments -- References -- Chapter 5 Scramjet Research and Development in Russia -- I. Introduction -- II. Initial Stage of Scramjet Investigations (1957-1972) -- III. Scramjet Investigations in 1972-1996 -- A. TsAGI Investigations -- B. CIAM Investigations -- C. ITAM Investigations -- D. MAI Investigations -- IV. Short Remarks on Scramjet Inlet and Nozzle Developments -- V. Conclusion -- Bibliography -- Appendix A: Three Problems in Supersonic Combustion -- Appendix B: Deceleration of Supersonic Flows in Smoothly Diverging-Area Rectangular Ducts -- Appendix C: Some Aspects of Scramjet-Vehicle Integration -- Appendix D: Leading-Edge Bluntness Effect on Performance of Hypersonic Two-Dimensional Air Intakes -- Chapter 6 Scramjet Performance -- Introduction -- Cycle Considerations -- Flow Nonuniformity and Cycle Performance -- Inlet -- Sidewall Compression Concepts -- Interactive Inlet Design -- Inlet/Isolator Interactions -- Combustor -- Hypersonic Combustion Physics -- Simulation Requirements -- Experimental Simulation -- Comparison of Combustion Data -- Instrumentation/Measurement Requirements -- Computational Simulation -- Computational Methods -- Combustor Performance Index-Thrust Potential -- Nozzle -- Engine/Vehicle System Integration -- Forebody/Inlet -- Nozzle/Afterbody -- Concluding Remarks -- Appendix A: Central Institute of Aviatian Motors NASA MACH 6.5 Scramjet Flight Test -- Introduction -- Experimental Apparatus and Test Conditions -- Flight and Ground-Test Results -- Appendix B: NASA'S Hyper-X Program -- Introduction -- Flight-Test Vehicle Design and Fabrication -- Flight-Test Plans -- Hyper-X Technology -- Acknowledgments -- References -- Chapter 7 Scramjet Inlets -- Nomenclature -- I. Introduction -- II. Definitions of Performance Parameters -- III. Inlet Design Issues -- A. Starting and Contraction Limits.
B. High-Temperature Effects -- C. Blunt Leading-Edge Effects -- D. Viscous Phenomena -- E. Boundary-Layer Separation -- F. Isolators/Supersonic Diffusers -- G. Combustor Entrance Profiles -- IV. Engine Cycle Calculations -- V. Performance Measurement Techniques -- VI. Design and Performance of Scramjet Inlets -- A. Two-Dimensional Planar Designs -- B. Two-Dimensional Axisymmetric Designs -- C. Three-Dimensional Inlet Designs -- D. Performance Characteristics -- VII. Summary and Recommendations for Future Investigations -- References -- Chapter 8 Supersonic Flow Combustors -- Nomenclature -- I. Introduction -- II. Phenomenological Considerations -- A. Inlet Flow -- B. Combustor Flow -- III. Design Approach Implications -- A. Step Combustors -- B. Isolator Combustors -- IV. Fuel Injection Basics -- A. Wall Jets -- B. In-Stream Injectors -- C. Hypermixers -- D. Mixing -- V. High Mach Number Implications -- A. Mixing -- B. Combustor Reactions -- C. CFD Solution Results -- D. Design Philosophy -- Appendix A: Inlet One-Dimensional Continuity and Energy Flow Solution -- Appendix B: Profile Flow Solution -- Appendix C: Entropy Limit Concept -- Appendix D: Combustor Thrust Potential Concept -- References -- Chapter 9 Aerothermodynamics of the Dual-Mode Combustion System -- Nomenclature -- I. Introduction -- II. H-K Diagram -- A. Scramjet and Ramjet H-K Diagrams -- B. H-K Diagram Closure -- III. Dual-Mode Combustion System -- A. Dual-Mode Concept -- B. Ramjet Mode (Subsonic Combustion) -- C. Scramjet Mode (Supersonic Combustion) -- D. Transition from Scramjet to Ramjet Mode -- IV. One-Dimensional Flow Analysis of the Isolator-Burner System -- A. Control Volume Analysis of the Isolator -- B. One-Dimensional Flow Analysis of the Burner -- C. Establishing a Choked Thermal Throat -- V. System Analysis of Isolator-Burner Interaction.
A. Scramjet with Shock-Free Isolator -- B. Scramjet with Oblique Shock Train -- C. Scramjet with Normal Shock Train -- VI. Interpretation of Experimental Data -- A. Billig's Experimental Wall-Pressure Measurements -- VII. Closure -- References -- Chapter 10 Basic Performance Assessment of Scram Combustors -- I. Introduction -- II. Scram-Combustor Effectiveness -- A. Kinetic Energy Efficiency -- B. Energy Availability Efficiency -- C. Stagnation Pressure Efficiency -- D. Combustion Process -- E. Set of Efficiencies -- III. Computational Tool and Limitations -- A. One-Dimensional Calculation Scheme -- IV. General Illustrative Studies -- A. Parametric Studies -- B. Results -- V. Specific Illustrative Studies -- A. Hypersonic Research Engine -- B. Direct Connect Combustion Tests due to Waltrup and Billig (1973) -- C. NASA Langley Direct-Connect Tests due to Northam, Greenberg, and Byington (1989) -- D. Free Piston Shock Hmnel Experiments due to Paull (1993) -- E. Test Data due to (1) Sabel'nikov, Voloschenko, Ostras, Sermanov, and Walther (1993) and (2) Mescheryakov and Sabel'nikov (1981) -- VI. Scaling Performance and Geometry -- A. Approach -- B. Ignition Delay Estimate -- C. Pressure Rise Along Combustor -- VII. Combustor-Based System Integration -- A. Inlet and Nozzle Efficiency -- B. Inlet Layout -- C Nozzle Layout -- References -- Appendix A: Efficiency Relations -- Appendix B: Heat Addition to a Supersonic Gas Flow -- Appendix C: Hydrogen Combustion Scheme -- Appendix D: Three-Dimensional Nozzles-Design and Integration -- Chapter 11 Strutjet Rocket-Based Combined-Cycle Engine -- I. Introduction -- II. Strutjet Engine -- A. Flow-Path Description -- B. Engine Architecture -- C. Strutjet Operating Modes -- D. Optimal Propulsion System Selection -- III. Strutjet Engine/Vehicle Integration -- A. Strutjet Reference Mission.
B. Engine-Vehicle Considerations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- I. International Efforts -- II. Inlets, Combustors, and Fuels -- III. Overall Systems -- IV. Future Developments -- V. Closing Comments -- References -- Chapter 1 Scramjet Testing in the T3 and T4 Hypersonic Impulse Facilities -- Nomenclature -- I. History, Aims, and Developments -- II. Facility and Instrumentation -- III. Fuel-Injection Systems -- A. Wall-Injection Combustion Results -- B. Wall-Injection Film-Cooling Results -- C. Port-Injection Results -- D. Central Injection -- IV. Combustion/Mixing Processes -- A. Mixing Controlled Combustion -- B. Kinetically Controlled Combustion -- C. Shock-Induced Ignition -- D. Shock-Induced Mixing -- V. Simple Theoretical Combustor and Thrust Model -- VI. Experimental Results of Specific Impulse -- VII. Effects of Atomic Oxygen and Nitric Oxide in the Freestream -- VIII. Different Fuels -- A. Hydrocarbon Fuels -- B. Silane-Enriched Fuels -- IX. Integrated Scramjet Measurements -- X. Skin-Friction Measurements -- XI. Discussion and Review -- Acknowledgments -- Bibliography -- Chapter 2 Scramjet Developments in France -- I. Historical Overview -- II. Basic Research on Diffusion Flame Combustion (1962-1967) -- A. Combustion in a Cylindrical Duct -- B. Freejet Test -- C. Combustion in a Divergent Duct -- D. Synthesis -- III. ESOPE Program (1966-1973) -- A. Origin and Principal Aims -- B. Studies Results -- C. Synthesis -- IV. Studies on Shock-Induced Combustion -- A. Principle -- B. ENSMA and LATECAM Studies -- V. Prepha Program (1992-1997) -- A. Origin and Principal Aims -- B. System Studies -- C. Development of New Test Facilities -- D. Numerical Means -- E. Development of Scramjet Components -- Color Plates -- F. Materials and Cooled Structures -- G. Flight Testing -- VI. Perspectives -- A. Space Application -- B. Missile Application.

References -- Chapter 3 Scramjet Investigations Within the German Hypersonics Technology Program (1993-1996) -- I. German Hypersonics Technology Program and Scramjet-Related Activities -- A. German Hypersonics Technology Program -- B. Scramjet Related Activities Within the HTP -- II. Theoretical Investigations for Scramjet Intake Designs -- A. Activities at Dasa-MT633 -- B. Activities at RWTH Aachen -- III. Theoretical and Experimental Investigations of Scramjet Combustion at TsAGI and DLR Lampoldshausen -- A. Combustor Model Design -- B. Fuel-Injection Modules -- C. Test Results -- IV. Freejet Wind-tunnel Testing of Scramjet Propulsion Systems at TsAGI -- A. Scramjet Propulsion System Model Concept -- B. Testing Focus -- C. Test Results -- V. Considerations for Flight Testing Small-Scale Scramjet Modules Using the RADUGA-D2 Flying Testbed -- A. Objectives for Flight Testing -- B. RADUGA-D2 Flying Testbed -- C. Flight Test Trajectory and Integration of Scramjet in the RADUGA-D2 -- References -- Chapter 4 Scramjet Engine Research at the National Aerospace Laboratory in Japan -- Nomenclature -- I. Introduction -- II. Engine Model -- A. Inlet -- B. Struts and Ramps -- C. Isolator, Fuel Injector, and Combustor -- D. Combustor Downstream Section and Nozzle -- E. LH[sub(2)]-Cooled Model -- III. Test Facility -- A. Outline -- B. Components -- C. Calibration of the RJTF -- IV. Measurements -- A. General Features -- B. Engine Exit Survey -- V. 5 Test Results -- A. General Features of the Engine Operation -- B. Mach 4 Tests -- C. Mach 6 Tests -- D. Mach 8 Tests -- E. Liquid-Hydrogen-Cooled Engine Tests -- VI. Supplementary Studies for Engine Testing -- A. Computational Fluid Dynamics -- B. Chemical Quenching in Gas-Sampling Probes -- C. Subscale Wind-Tunnel Testing -- D. Reaction Kinetic Studies on the Scramjet -- VII. Conclusions and Future Prospects.

Acknowledgments -- References -- Chapter 5 Scramjet Research and Development in Russia -- I. Introduction -- II. Initial Stage of Scramjet Investigations (1957-1972) -- III. Scramjet Investigations in 1972-1996 -- A. TsAGI Investigations -- B. CIAM Investigations -- C. ITAM Investigations -- D. MAI Investigations -- IV. Short Remarks on Scramjet Inlet and Nozzle Developments -- V. Conclusion -- Bibliography -- Appendix A: Three Problems in Supersonic Combustion -- Appendix B: Deceleration of Supersonic Flows in Smoothly Diverging-Area Rectangular Ducts -- Appendix C: Some Aspects of Scramjet-Vehicle Integration -- Appendix D: Leading-Edge Bluntness Effect on Performance of Hypersonic Two-Dimensional Air Intakes -- Chapter 6 Scramjet Performance -- Introduction -- Cycle Considerations -- Flow Nonuniformity and Cycle Performance -- Inlet -- Sidewall Compression Concepts -- Interactive Inlet Design -- Inlet/Isolator Interactions -- Combustor -- Hypersonic Combustion Physics -- Simulation Requirements -- Experimental Simulation -- Comparison of Combustion Data -- Instrumentation/Measurement Requirements -- Computational Simulation -- Computational Methods -- Combustor Performance Index-Thrust Potential -- Nozzle -- Engine/Vehicle System Integration -- Forebody/Inlet -- Nozzle/Afterbody -- Concluding Remarks -- Appendix A: Central Institute of Aviatian Motors NASA MACH 6.5 Scramjet Flight Test -- Introduction -- Experimental Apparatus and Test Conditions -- Flight and Ground-Test Results -- Appendix B: NASA'S Hyper-X Program -- Introduction -- Flight-Test Vehicle Design and Fabrication -- Flight-Test Plans -- Hyper-X Technology -- Acknowledgments -- References -- Chapter 7 Scramjet Inlets -- Nomenclature -- I. Introduction -- II. Definitions of Performance Parameters -- III. Inlet Design Issues -- A. Starting and Contraction Limits.

B. High-Temperature Effects -- C. Blunt Leading-Edge Effects -- D. Viscous Phenomena -- E. Boundary-Layer Separation -- F. Isolators/Supersonic Diffusers -- G. Combustor Entrance Profiles -- IV. Engine Cycle Calculations -- V. Performance Measurement Techniques -- VI. Design and Performance of Scramjet Inlets -- A. Two-Dimensional Planar Designs -- B. Two-Dimensional Axisymmetric Designs -- C. Three-Dimensional Inlet Designs -- D. Performance Characteristics -- VII. Summary and Recommendations for Future Investigations -- References -- Chapter 8 Supersonic Flow Combustors -- Nomenclature -- I. Introduction -- II. Phenomenological Considerations -- A. Inlet Flow -- B. Combustor Flow -- III. Design Approach Implications -- A. Step Combustors -- B. Isolator Combustors -- IV. Fuel Injection Basics -- A. Wall Jets -- B. In-Stream Injectors -- C. Hypermixers -- D. Mixing -- V. High Mach Number Implications -- A. Mixing -- B. Combustor Reactions -- C. CFD Solution Results -- D. Design Philosophy -- Appendix A: Inlet One-Dimensional Continuity and Energy Flow Solution -- Appendix B: Profile Flow Solution -- Appendix C: Entropy Limit Concept -- Appendix D: Combustor Thrust Potential Concept -- References -- Chapter 9 Aerothermodynamics of the Dual-Mode Combustion System -- Nomenclature -- I. Introduction -- II. H-K Diagram -- A. Scramjet and Ramjet H-K Diagrams -- B. H-K Diagram Closure -- III. Dual-Mode Combustion System -- A. Dual-Mode Concept -- B. Ramjet Mode (Subsonic Combustion) -- C. Scramjet Mode (Supersonic Combustion) -- D. Transition from Scramjet to Ramjet Mode -- IV. One-Dimensional Flow Analysis of the Isolator-Burner System -- A. Control Volume Analysis of the Isolator -- B. One-Dimensional Flow Analysis of the Burner -- C. Establishing a Choked Thermal Throat -- V. System Analysis of Isolator-Burner Interaction.

A. Scramjet with Shock-Free Isolator -- B. Scramjet with Oblique Shock Train -- C. Scramjet with Normal Shock Train -- VI. Interpretation of Experimental Data -- A. Billig's Experimental Wall-Pressure Measurements -- VII. Closure -- References -- Chapter 10 Basic Performance Assessment of Scram Combustors -- I. Introduction -- II. Scram-Combustor Effectiveness -- A. Kinetic Energy Efficiency -- B. Energy Availability Efficiency -- C. Stagnation Pressure Efficiency -- D. Combustion Process -- E. Set of Efficiencies -- III. Computational Tool and Limitations -- A. One-Dimensional Calculation Scheme -- IV. General Illustrative Studies -- A. Parametric Studies -- B. Results -- V. Specific Illustrative Studies -- A. Hypersonic Research Engine -- B. Direct Connect Combustion Tests due to Waltrup and Billig (1973) -- C. NASA Langley Direct-Connect Tests due to Northam, Greenberg, and Byington (1989) -- D. Free Piston Shock Hmnel Experiments due to Paull (1993) -- E. Test Data due to (1) Sabel'nikov, Voloschenko, Ostras, Sermanov, and Walther (1993) and (2) Mescheryakov and Sabel'nikov (1981) -- VI. Scaling Performance and Geometry -- A. Approach -- B. Ignition Delay Estimate -- C. Pressure Rise Along Combustor -- VII. Combustor-Based System Integration -- A. Inlet and Nozzle Efficiency -- B. Inlet Layout -- C Nozzle Layout -- References -- Appendix A: Efficiency Relations -- Appendix B: Heat Addition to a Supersonic Gas Flow -- Appendix C: Hydrogen Combustion Scheme -- Appendix D: Three-Dimensional Nozzles-Design and Integration -- Chapter 11 Strutjet Rocket-Based Combined-Cycle Engine -- I. Introduction -- II. Strutjet Engine -- A. Flow-Path Description -- B. Engine Architecture -- C. Strutjet Operating Modes -- D. Optimal Propulsion System Selection -- III. Strutjet Engine/Vehicle Integration -- A. Strutjet Reference Mission.

B. Engine-Vehicle Considerations.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.