ORPP logo
Image from Google Jackets

Turbulent Flows : Prediction, Modeling and Analysis.

By: Material type: TextTextSeries: Physics Research and TechnologyPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (266 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781624177439
Subject(s): Genre/Form: Additional physical formats: Print version:: Turbulent Flows: Prediction, Modeling and AnalysisDDC classification:
  • 532/.0527
LOC classification:
  • TA357.5.T87 -- T8853 2013eb
Online resources:
Contents:
Intro -- TURBULENT FLOWS -- TURBULENT FLOWS -- Contents -- Preface -- Turbulent Flows: Prediction, Modeling and Analysis -- On Analytical Solutions to the Three-Dimensional Incompressible Navier-Stokes Equations with General Forcing Functions and Their Relation to Turbulence -- 1. Introduction -- 2. Problem Formulation -- 2.1. The Formulation for Velocity and the Pressure Relation -- 2.2. The Formulation for Velocity -- 3. The Analytical Solutions -- 3.1. The Solution for the Riccati Equation -- 3.2. The Complete Solution -- 4. Integral Evaluation of Analytical Solutions -- 5. The Onset of Turbulence -- 5.1. The Non Existence of Trivial Solutions -- 6. Solution Examples and Discussions -- Conclusion -- References -- Large-Eddy Simulation of Turbulence-induced Aero-Optical Effects in Free Shear and Wall Bounded Flows -- Abstract -- Development of a New Curvature Law of the Wall for Internal Swirling Axial Flows -- Abstract -- Nomenclature -- 1. Introduction -- 2. Methods -- 2. 1. Curvature Law Derivation -- 2. 2. Numerical Solution -- 2.3. Analytical Approximation -- 3. Results and Discussion -- 3. 1. Consistency -- 3. 2. Effect of Curvature Radius -- 3. 3.Effect of Shear Stress Ratio, σ -- 3. 4. Comparison with Measurements -- I. Convex-Gillis and Johnston [8] -- II. Concave-so and Mellor [6] -- III. Concave-Morrison Et Al. [37] -- 4. Application -- 4. 1.Curvature Wall Function Formulation -- 4. 2. Grid Independence Testing -- 4. 3. Comparison with LDA Measurement of Swirl Velocity -- 4. 4. Comparison with Measurement of Damping Coefficient -- Conclusion -- References -- On Noise Prediction from a Compact Region of Turbulence in an Infinite Circular Hard-Walled Duct -- Institute of Hydromechanics -- of the National Academy of Sciences of Ukraine, -- Kyiv, Ukraine -- Abstract -- Nomenclature -- Introduction -- 1. Formulation of the Problem.
2. Acoustic Field -- 2.1. Acoustic Density and Pressure -- 2.2. Green's Function -- 2.3. Acoustic Power -- 2.4. General Comments -- 3. Dominant Contribution of Quadrupoles -- 3.1. Large Eddies -- 3.2. Small Eddies -- 3.2.1. Low Frequencies -- 3.2.2. High Frequencies -- 4. Dominant Contribution of Dipoles -- 4.1. Large Eddies -- 4.2. Small Eddies -- 4.2.1. Low Frequencies -- 4.2.2. High Frequencies -- Conclusion -- References -- Computer Simulation of Turbulent Flow Generated by a Deformed Anchor Impeller -- Abstract -- Nomenclature -- 1. Introduction -- 2. Governing Equations -- 2. 1. Fluid Fields -- 2. 2. Structure elds -- 2. 3. Fluid-Structure Interface -- 3. Computational Simulation -- 3. 1. Coupling Algorithm -- 3. 1. 1. CSD Code -- 3. 1. 2. CFD Code -- 3. 1. 3. Coupling Interface -- 3. 2. Update Mesh of Fluid Domain -- 4. Simulation Results -- 4. 1. Hydrodynamic Studies -- 4. 1. 1. Flow Patterns in R-Θ Plane -- 4. 1. 2. Flow Patterns in the R-Z Plane -- 4. 1. 3. Axial Profiles of the Radial Velocity Component -- 4. 1. 4. Distribution of the Turbulent Kinetic Energy in the R-Θ Plane -- 4. 1. 5. Distribution of the Turbulent Kinetic Energy in the r-Z Plane -- 4. 1. 6. Distribution of Dissipation Rate of the Turbulent Kinetic Energy in the r-Θ Plane -- 4. 1. 7. Distribution of Dissipation Rate of the Turbulent Kinetic Energy in the r-z Plane -- 4. 1. 8. Distribution of the Turbulent Viscosity in the r-Θ Plane -- 4. 1. 9. Distribution of the Turbulent Viscosity in the r-z Plane -- 4. 1. 10. Comparison with Anterior Results -- 4. 2. Static Studies -- Conclusion -- References -- Turbulent Flow Structures for Different Roughness Conditions of Channel Walls: Results of Experimental Investigation in Laboratory Flumes -- Abstract -- Nomenclature -- 1. Introduction -- 2. Experimental Apparatus -- 3. Horizontal Turbulent Structures.
3. 1. Occurrence Frequency of Events -- 3. 2. Correlation and Conditional Averaging: Effect of the Side-Walls Roughness -- Conclusion -- References -- Study of Turbulent Flow on an Open Circuit Wind Tunnel -- Abstract -- Nomenclature -- 1. Introduction -- 2. Experimental Device -- 3. Numerical Method -- 3.1. CFD Code -- 3.1.1. Pre-Processor -- 3.1.2. Solver -- 3.1.3. Post Processor -- 3.2. Mathematical Formulation -- 3.3. Boundary Conditions -- 3.4. Meshing Choice -- 4. Numerical Results -- 4.1. Velocity Vectors -- 4.2. Magnitude Velocity -- 4.3. Static Pressure -- 4.4. Dynamic Pressure -- 4.5. Turbulence Kinetic Energy -- 4.6. Dissipation Rate of the Turbulence Kinetic Energy -- 4.7. Turbulent Viscosity -- 5. Comparison between Numerical -- and Experimental Results -- Conclusion -- References -- Color Doppler Ultrasound (C. D. U. S.) Analysis of Turbulent Flow in Three Different Animal Models -- Abstract -- 1. Introduction -- 1. 1. Atherosclerosis -- 1. 2. The Complex Rheology of Blood -- 2. Material and Methods -- 2. 1. Stenosis Model -- 2. 1. 1. Animals and Experimental Design -- 2. 1. 2. Aortic Stenosis -- 2. 1. 3. Animal Surgery -- 2. 1. 4. Doppler Ultrasonography -- 2. 2. Infra-Diaphragmatic Aortic Constriction -- 2. 2. 1. Experimental Protocol -- 2. 2. 2. Animal Surgery -- 2. 2. 3. Doppler -- 2. 3. Abdominal Aortic Aneurysm Model -- 2. 3. 1. Experimental Protocol and Surgery -- 2. 3. 2. Color Doppler Ultrasound -- 3. Results -- 3. 1. Plug Stenosis Model -- 3. 2. Stenosis Model -- 3. 3. Abdominal Aortic Aneurysm Model -- 4. Role of Ultrasonography in the Evaluation of Wall Shear Stress -- Conclusion -- Acknowledgments -- References -- Entrainment of Coarse Solid Particles by Energetic Turbulent Flow Events -- Abstract -- Nomenclature -- 1. Introduction -- 2. Theoretical Formulation of the Energy Criterion.
2.1. The Need for a New Conceptual Framework Leading to Energy Criterion -- 2.2. Formulation of the Energy Equations -- 2.1.1. Entrainment by Saltation -- 2.1.2. Entrainment by Rolling -- 3. Experimental Procedure -- 4. Results -- Conclusion -- References -- Elastic Effects on the Inviscid Instability of Shear Flows -- Abstract -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- TURBULENT FLOWS -- TURBULENT FLOWS -- Contents -- Preface -- Turbulent Flows: Prediction, Modeling and Analysis -- On Analytical Solutions to the Three-Dimensional Incompressible Navier-Stokes Equations with General Forcing Functions and Their Relation to Turbulence -- 1. Introduction -- 2. Problem Formulation -- 2.1. The Formulation for Velocity and the Pressure Relation -- 2.2. The Formulation for Velocity -- 3. The Analytical Solutions -- 3.1. The Solution for the Riccati Equation -- 3.2. The Complete Solution -- 4. Integral Evaluation of Analytical Solutions -- 5. The Onset of Turbulence -- 5.1. The Non Existence of Trivial Solutions -- 6. Solution Examples and Discussions -- Conclusion -- References -- Large-Eddy Simulation of Turbulence-induced Aero-Optical Effects in Free Shear and Wall Bounded Flows -- Abstract -- Development of a New Curvature Law of the Wall for Internal Swirling Axial Flows -- Abstract -- Nomenclature -- 1. Introduction -- 2. Methods -- 2. 1. Curvature Law Derivation -- 2. 2. Numerical Solution -- 2.3. Analytical Approximation -- 3. Results and Discussion -- 3. 1. Consistency -- 3. 2. Effect of Curvature Radius -- 3. 3.Effect of Shear Stress Ratio, σ -- 3. 4. Comparison with Measurements -- I. Convex-Gillis and Johnston [8] -- II. Concave-so and Mellor [6] -- III. Concave-Morrison Et Al. [37] -- 4. Application -- 4. 1.Curvature Wall Function Formulation -- 4. 2. Grid Independence Testing -- 4. 3. Comparison with LDA Measurement of Swirl Velocity -- 4. 4. Comparison with Measurement of Damping Coefficient -- Conclusion -- References -- On Noise Prediction from a Compact Region of Turbulence in an Infinite Circular Hard-Walled Duct -- Institute of Hydromechanics -- of the National Academy of Sciences of Ukraine, -- Kyiv, Ukraine -- Abstract -- Nomenclature -- Introduction -- 1. Formulation of the Problem.

2. Acoustic Field -- 2.1. Acoustic Density and Pressure -- 2.2. Green's Function -- 2.3. Acoustic Power -- 2.4. General Comments -- 3. Dominant Contribution of Quadrupoles -- 3.1. Large Eddies -- 3.2. Small Eddies -- 3.2.1. Low Frequencies -- 3.2.2. High Frequencies -- 4. Dominant Contribution of Dipoles -- 4.1. Large Eddies -- 4.2. Small Eddies -- 4.2.1. Low Frequencies -- 4.2.2. High Frequencies -- Conclusion -- References -- Computer Simulation of Turbulent Flow Generated by a Deformed Anchor Impeller -- Abstract -- Nomenclature -- 1. Introduction -- 2. Governing Equations -- 2. 1. Fluid Fields -- 2. 2. Structure elds -- 2. 3. Fluid-Structure Interface -- 3. Computational Simulation -- 3. 1. Coupling Algorithm -- 3. 1. 1. CSD Code -- 3. 1. 2. CFD Code -- 3. 1. 3. Coupling Interface -- 3. 2. Update Mesh of Fluid Domain -- 4. Simulation Results -- 4. 1. Hydrodynamic Studies -- 4. 1. 1. Flow Patterns in R-Θ Plane -- 4. 1. 2. Flow Patterns in the R-Z Plane -- 4. 1. 3. Axial Profiles of the Radial Velocity Component -- 4. 1. 4. Distribution of the Turbulent Kinetic Energy in the R-Θ Plane -- 4. 1. 5. Distribution of the Turbulent Kinetic Energy in the r-Z Plane -- 4. 1. 6. Distribution of Dissipation Rate of the Turbulent Kinetic Energy in the r-Θ Plane -- 4. 1. 7. Distribution of Dissipation Rate of the Turbulent Kinetic Energy in the r-z Plane -- 4. 1. 8. Distribution of the Turbulent Viscosity in the r-Θ Plane -- 4. 1. 9. Distribution of the Turbulent Viscosity in the r-z Plane -- 4. 1. 10. Comparison with Anterior Results -- 4. 2. Static Studies -- Conclusion -- References -- Turbulent Flow Structures for Different Roughness Conditions of Channel Walls: Results of Experimental Investigation in Laboratory Flumes -- Abstract -- Nomenclature -- 1. Introduction -- 2. Experimental Apparatus -- 3. Horizontal Turbulent Structures.

3. 1. Occurrence Frequency of Events -- 3. 2. Correlation and Conditional Averaging: Effect of the Side-Walls Roughness -- Conclusion -- References -- Study of Turbulent Flow on an Open Circuit Wind Tunnel -- Abstract -- Nomenclature -- 1. Introduction -- 2. Experimental Device -- 3. Numerical Method -- 3.1. CFD Code -- 3.1.1. Pre-Processor -- 3.1.2. Solver -- 3.1.3. Post Processor -- 3.2. Mathematical Formulation -- 3.3. Boundary Conditions -- 3.4. Meshing Choice -- 4. Numerical Results -- 4.1. Velocity Vectors -- 4.2. Magnitude Velocity -- 4.3. Static Pressure -- 4.4. Dynamic Pressure -- 4.5. Turbulence Kinetic Energy -- 4.6. Dissipation Rate of the Turbulence Kinetic Energy -- 4.7. Turbulent Viscosity -- 5. Comparison between Numerical -- and Experimental Results -- Conclusion -- References -- Color Doppler Ultrasound (C. D. U. S.) Analysis of Turbulent Flow in Three Different Animal Models -- Abstract -- 1. Introduction -- 1. 1. Atherosclerosis -- 1. 2. The Complex Rheology of Blood -- 2. Material and Methods -- 2. 1. Stenosis Model -- 2. 1. 1. Animals and Experimental Design -- 2. 1. 2. Aortic Stenosis -- 2. 1. 3. Animal Surgery -- 2. 1. 4. Doppler Ultrasonography -- 2. 2. Infra-Diaphragmatic Aortic Constriction -- 2. 2. 1. Experimental Protocol -- 2. 2. 2. Animal Surgery -- 2. 2. 3. Doppler -- 2. 3. Abdominal Aortic Aneurysm Model -- 2. 3. 1. Experimental Protocol and Surgery -- 2. 3. 2. Color Doppler Ultrasound -- 3. Results -- 3. 1. Plug Stenosis Model -- 3. 2. Stenosis Model -- 3. 3. Abdominal Aortic Aneurysm Model -- 4. Role of Ultrasonography in the Evaluation of Wall Shear Stress -- Conclusion -- Acknowledgments -- References -- Entrainment of Coarse Solid Particles by Energetic Turbulent Flow Events -- Abstract -- Nomenclature -- 1. Introduction -- 2. Theoretical Formulation of the Energy Criterion.

2.1. The Need for a New Conceptual Framework Leading to Energy Criterion -- 2.2. Formulation of the Energy Equations -- 2.1.1. Entrainment by Saltation -- 2.1.2. Entrainment by Rolling -- 3. Experimental Procedure -- 4. Results -- Conclusion -- References -- Elastic Effects on the Inviscid Instability of Shear Flows -- Abstract -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.