ORPP logo
Image from Google Jackets

Composite Materials in Engineering Structures.

By: Material type: TextTextPublisher: New York : Nova Science Publishers, Incorporated, 2011Copyright date: ©2021Edition: 1st edDescription: 1 online resource (431 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781617611445
Subject(s): Genre/Form: Additional physical formats: Print version:: Composite Materials in Engineering StructuresDDC classification:
  • 624.1/8
LOC classification:
  • TA418.9.C6 C583 2011
Online resources:
Contents:
Intro -- COMPOSITE MATERIALS INENGINEERING STRUCTURES -- COMPOSITE MATERIALS INENGINEERING STRUCTURES -- CONTENTS -- PREFACE -- Chapter 1EFFECTS OF THERMO-OXIDATION ONCOMPOSITE MATERIALS AND STRUCTURESAT HIGH TEMPERATURES -- ABSTRACT -- INTRODUCTION -- LITERATURE REVIEW: RELEVANT ISSUESAND EXPERIMENTAL FACTS -- Effect of Thermo-Oxidation on Damage Onset andPropagation in Composite Laminates -- Effects of Thermo-Oxidation on the Neat Polymer -- Classical Mechanistic Scheme for Thermo-Oxidation in Polymers and PMCS -- Discussion on the Reviewed Experimental Facts -- CHARACTERIZATION OF MATRIX SHRINKAGE IN PMCS BYCONFOCAL INTERFEROMETRIC MICROSCOPY -- CHEMO-MECHANICS COUPLED MODEL FORTHERMO-OXIDATION OF POLYMERS AND PMCS -- Remarks on the Thermodynamics Framework -- Chemo-Mechanics Couplings in the Elastic Range -- Experimental Assessment of Chemo-Mechanics Couplings inNeat Polymer Resins under Stress -- Viscoelastic Model of a Polymer at High Temperature -- Identification of the Viscoelastic Model for a 977-2 PolymerMatrix Resin at High Temperature -- VALIDATION OF THE MODEL AND SIMULATIONS -- Validation of the Model through Comparison with Cim Matrix ShrinkageMeasurements in PMCs -- Model Simulations - Micro Damage Onset -- Mass Loss Simulation in PMCs Laminates -- ACCELERATED THERMO-OXIDATION -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 2DAMPING IN COMPOSITE MATERIALSAND STRUCTURES -- 1. Introduction -- 2. Damping in a Unidirectional Composite as a Functionof the Constituents -- 3. Bending Vibrations of Undamped and Damped LaminateBeams -- 3.1. Undamped Beam Vibrations -- 3.1.1. Normal Modes in the Case of Undamped Vibrations -- 3.1.2. Motion Equation in Normal Co-ordinates -- 3.2. Damping Modelling Using Viscous Friction -- 3.2.1. Vibration Equation of Damped Beams -- 3.2.2. Motion Equation in Normal Coordinates.
3.2.3. Forced Harmonic Vibrations -- 3.3. Damping Modelling Using Complex Stiffness -- 3.4. Beam Response to a Concentrated Loading -- 4. Evaluation of the Damping Properties of Orthotropic Beams asFunctions of The Material Orientation -- 4.1. Energy Analysis of Beam Damping -- 4.1.1. Introduction -- 4.1.2. Adams-bacon Approach -- 4.1.3. Ni-Adams Analysis -- 4.1.4. General Formulation of Damping -- 4.2. Complex Moduli -- 5. Evaluation of the Damping Properties of Plates as Functionof Material Direction -- 5.1. Orthotropic Plates -- 5.1.1. Formulation -- 5.1.2. Procedure -- 5.2. Laminated Plates -- 5.3. Conclusion -- 6. Damping Analysis of Laminates with Interleaved ViscoelasticLayers -- 6.1. Introduction -- 6.2. Laminate Configurations -- 6.3. Evaluation of the Damping in the Case of Interleaved Viscoelastic Layers -- 7. Damping Evaluation Using Finite Element Analysis -- 7.1. Introduction -- 7.2. In-Plane Strain Energy as a Function of In-Plane Stresses -- 7.3. In-Plane Stress Evaluation -- 7.4. In-Plane Energy Evaluation -- 7.5. Transverse Shear Stresses -- 7.6. Transverse Shear Strain Energy as Function of Transverse ShearStresses -- 7.7. Evaluation of Transverse Shear Strain Energy -- 7.8. Structural Damping and Discussion -- 7.9. Procedure and Discussion -- 8. Experimental Investigation and Discussion on the DampingProperties -- 8.1. Materials -- 8.2. Experimental Equipment -- 8.3. Analysis of the Experimental Results -- 8.3.1. Determination of the Constitutive Damping Parameters -- 8.3.2. Plate Damping Measurement -- 8.4. Damping of Unidirectional Laminates -- 8.4.1. Experimental Results -- 8.4.2. Comparison of Experimental Results and Models -- 8.4.2.1. Models of Adams-Bacon and Ni-Adams -- 8.4.2.2. Complex Stiffness Model -- 8.4.2.3. Using the Ritz Method -- 8.4.2.3.1. Damping Parameters -- 8.4.2.3.2. Influence of the Width of the Beams.
8.4.2.3.3. Damping according to the modes of beam vibrations -- 8.5. Damping of Laminated Beams -- 8.6. Damping of Cloth Reinforced Laminates -- 8.7. Damping of Unidirectional Laminates with Interleaved ViscoelasticLayers -- 8.7.1. Materials -- 8.7.2. Experimental Results -- 8.7.3. Analysis of the Experimental Results -- 8.7.3.1. Dynamic Properties of the Viscoelastic Layers -- 8.7.3.2. Damping of the Glass Fibre Laminates with Interleaved Viscoelastic Layers -- 9. Dynamic Response of a Damped Composite Structure -- Conclusions -- References -- Chapter 3MECHANICAL STATES INDUCED BY MOISTUREDIFFUSION IN ORGANIC MATRIX COMPOSITES:COUPLED SCALE TRANSITION MODELS -- Abstract -- 1. Introduction -- 2. Effects of Moisture Dependent Constituents Propertieson the Hygroscopic Stresses Experienced by CompositeStructures -- 2.1. Inverse Scale Transition Modelling for the Identification of theHygro-Elastic Properties of One Constituent of a Composite Ply -- 2.1.1. Introduction -- 2.1.2. Estimating Constituents Properties from Eshelby-Kröner Self-consistentInverse Scale Transition Model -- 2.1.2.1. Introduction -- 2.1.2.2. Estimating the Effective Properties of a Composite Ply through Eshelby-KrönerSelf-consistent Model -- 2.1.2.3. Inverse Eshelby-Kröner Self-consistent Elastic Model -- 2.1.2.4. Application of Inverse Scale Transition Model to the Determinationof the Moisture and Temperature Dependent Pseudo-macroscopic ElasticProperties of Carbon-epoxy Composites -- 2.2. Multi-Scale Stresses Estimations in Composite Structures Accounting ofHygro-Mechanical Coupling for the Elastic Stiffness: T300/5208Composite Pipe Submitted to Environmental Conditions -- 2.3. Discussion about the Results -- 3. Stress-Dependent Moisture Diffusion in Composite Materials -- 3.1. Accounting for a Coupling between the Mechanical Statesand the Moisture Diffusion in Pure Organic Matrix.
3.1.1. Moisture Diffusion Coefficient -- 3.1.2. Maximum Moisture Absorption Capacity -- 3.2. Composite Materials -- 3.2.1. Modelling the Moisture Diffusion Process -- 3.2.2. Mechanical Modelling -- 3.3. Numerical Results -- 3.3.1. Effects of the Hygro-mechanical Coupling on the Main Parametersof the Diffusion Process -- 3.3.2. Predicted Multi-scale Mechanical States -- 4. Effect of Mechanical Loading on the Effective Behaviourof Polymer Matrix Composites -- 4.1. Introduction -- 4.2. Hygro-Mechanical Problem -- 4.2.1. Mechanical Problem -- 4.2.2. Calculation of the Matrix Free Volume -- 4.3. Effects of Mechanical Loading on the Diffusion Parameters -- 4.3.1. Effect of Mechanical Loading on the Moisture Content at Saturation -- 4.3.2. Effect of Mechanical Loading on the Gap Parameters at the InterfaceFiber/matrix -- 4.3.3. Effect of Mechanical Loading on the Diffusion Coefficients -- 4.4. Hygroscopic Problem -- 4.5. Moisture Content Estimation -- 5. Conclusion and Perspectives -- References -- Chapter 4FATIGUE AND FRACTURE OF SHORT FIBRECOMPOSITES EXPOSED TO EXTREMETEMPERATURES -- Abstract -- 1. Introduction -- 2. Fatigue and Fracture of Composite -- 2.1. Failure Mode of Composites -- De-bonding -- Interlaminar Failure -- Fibre Buckling -- Fibre Pull-out -- Fibre Breakage -- Cracking of Composites -- Micro-cracking of Composites -- 2.2. Fatigue Failure of Composites -- 3. Short Fibre Composites -- 3.1. Fibre Length and Orientation -- 3.2. Stress and Strain Distribution at Fibre -- 4. Mechanical Property Variation in Fatigue of Polymer BasedShort Fibre Composites -- 4.1. Residual Strength of Short Fibre Composites -- 4.2. Elastic Modulus of Short Fibre Composite Materials -- 4.2.1. Elastic Properties of Short Fibre Composite Materials Using Rule-of-Mixtures -- 5. Temperature Effect on the Thermosetting Polymer -- 5.1. Thermosetting Polymer.
Phenolic Resins -- Polyester Resins -- Epoxy Resins -- Vinylester Resins [18] -- 5.2. Failure of Thermosetting Composites by Temperature Effects -- 5.3. Variation in Modulus of Polymer Composites with Temperature -- The Glassy State (Region 1) -- The Glass Transition (Region 2) -- The Rubbery State (Region 3) -- The Liquid Flow Region (Region 4) -- 5.4. Glass Transition Temperature, g T -- 6. Fatigue Damage Modelling in Short-Fibre Composite -- 6.1. Micromechanical Model -- Critical Element &amp -- Damage Accumulation Concept -- 6.2. Phenomenological Model -- Combined Phenomenological Damage Model -- 7. Experimental Consideration and Verification Study -- 7.1. Experimental Variables -- 7.1.1. Stress Ratio, R -- 7.1.2. Loading Frequency -- 7.2. Experimentation and Verification Study -- 7.2.1. Experimental Program -- 7.2.2. Experimental Result and Verification of the Models Residual Strength -- Residual Stiffness -- 8. Conclusion -- References -- Chapter 5FATIGUE OF POLYMER MATRIX COMPOSITESAT ELEVATED TEMPERATURES -AREVIEW -- Abstract -- 1. Introduction -- 2. Fatigue Behaviour of PMC Materials -- 3. Development of High Temperature Polymers -- 4. Review of Elevated Temperature Fatigue Studies -- 4.1. Experimental -- 4.2. Prediction Modeling -- Conclusion -- 5.1. Experimental -- 5.2. Prediction Modeling -- 5.3. Current Research -- Acknowledgments -- References -- Chapter 6THE CLOSED FORM SOLUTIONS OF INFINITESIMALAND FINITE DEFORMATION OF 2-D LAMINATEDCURVED BEAMS OF VARIABLE CURVATURES -- Abstract -- 1. Introduction -- 2. Fundamental Equations -- 3. Solutions of Laminated Curved Beams of InfinitesimalDeformation -- 3.1. Laminated Curved Beam Theory: Infinitesimal Deformation -- 3.2. Laminate Curved Beam under Pure Bending -- 3.2.1. Circular Arc -- 3.2.2. Elliptic Arc -- 3.3. Laminate Curved Beams under Radial Load -- 3.3.1. Cycloid Curve.
3.4. Laminated Ring under Opposite Point Loads.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- COMPOSITE MATERIALS INENGINEERING STRUCTURES -- COMPOSITE MATERIALS INENGINEERING STRUCTURES -- CONTENTS -- PREFACE -- Chapter 1EFFECTS OF THERMO-OXIDATION ONCOMPOSITE MATERIALS AND STRUCTURESAT HIGH TEMPERATURES -- ABSTRACT -- INTRODUCTION -- LITERATURE REVIEW: RELEVANT ISSUESAND EXPERIMENTAL FACTS -- Effect of Thermo-Oxidation on Damage Onset andPropagation in Composite Laminates -- Effects of Thermo-Oxidation on the Neat Polymer -- Classical Mechanistic Scheme for Thermo-Oxidation in Polymers and PMCS -- Discussion on the Reviewed Experimental Facts -- CHARACTERIZATION OF MATRIX SHRINKAGE IN PMCS BYCONFOCAL INTERFEROMETRIC MICROSCOPY -- CHEMO-MECHANICS COUPLED MODEL FORTHERMO-OXIDATION OF POLYMERS AND PMCS -- Remarks on the Thermodynamics Framework -- Chemo-Mechanics Couplings in the Elastic Range -- Experimental Assessment of Chemo-Mechanics Couplings inNeat Polymer Resins under Stress -- Viscoelastic Model of a Polymer at High Temperature -- Identification of the Viscoelastic Model for a 977-2 PolymerMatrix Resin at High Temperature -- VALIDATION OF THE MODEL AND SIMULATIONS -- Validation of the Model through Comparison with Cim Matrix ShrinkageMeasurements in PMCs -- Model Simulations - Micro Damage Onset -- Mass Loss Simulation in PMCs Laminates -- ACCELERATED THERMO-OXIDATION -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 2DAMPING IN COMPOSITE MATERIALSAND STRUCTURES -- 1. Introduction -- 2. Damping in a Unidirectional Composite as a Functionof the Constituents -- 3. Bending Vibrations of Undamped and Damped LaminateBeams -- 3.1. Undamped Beam Vibrations -- 3.1.1. Normal Modes in the Case of Undamped Vibrations -- 3.1.2. Motion Equation in Normal Co-ordinates -- 3.2. Damping Modelling Using Viscous Friction -- 3.2.1. Vibration Equation of Damped Beams -- 3.2.2. Motion Equation in Normal Coordinates.

3.2.3. Forced Harmonic Vibrations -- 3.3. Damping Modelling Using Complex Stiffness -- 3.4. Beam Response to a Concentrated Loading -- 4. Evaluation of the Damping Properties of Orthotropic Beams asFunctions of The Material Orientation -- 4.1. Energy Analysis of Beam Damping -- 4.1.1. Introduction -- 4.1.2. Adams-bacon Approach -- 4.1.3. Ni-Adams Analysis -- 4.1.4. General Formulation of Damping -- 4.2. Complex Moduli -- 5. Evaluation of the Damping Properties of Plates as Functionof Material Direction -- 5.1. Orthotropic Plates -- 5.1.1. Formulation -- 5.1.2. Procedure -- 5.2. Laminated Plates -- 5.3. Conclusion -- 6. Damping Analysis of Laminates with Interleaved ViscoelasticLayers -- 6.1. Introduction -- 6.2. Laminate Configurations -- 6.3. Evaluation of the Damping in the Case of Interleaved Viscoelastic Layers -- 7. Damping Evaluation Using Finite Element Analysis -- 7.1. Introduction -- 7.2. In-Plane Strain Energy as a Function of In-Plane Stresses -- 7.3. In-Plane Stress Evaluation -- 7.4. In-Plane Energy Evaluation -- 7.5. Transverse Shear Stresses -- 7.6. Transverse Shear Strain Energy as Function of Transverse ShearStresses -- 7.7. Evaluation of Transverse Shear Strain Energy -- 7.8. Structural Damping and Discussion -- 7.9. Procedure and Discussion -- 8. Experimental Investigation and Discussion on the DampingProperties -- 8.1. Materials -- 8.2. Experimental Equipment -- 8.3. Analysis of the Experimental Results -- 8.3.1. Determination of the Constitutive Damping Parameters -- 8.3.2. Plate Damping Measurement -- 8.4. Damping of Unidirectional Laminates -- 8.4.1. Experimental Results -- 8.4.2. Comparison of Experimental Results and Models -- 8.4.2.1. Models of Adams-Bacon and Ni-Adams -- 8.4.2.2. Complex Stiffness Model -- 8.4.2.3. Using the Ritz Method -- 8.4.2.3.1. Damping Parameters -- 8.4.2.3.2. Influence of the Width of the Beams.

8.4.2.3.3. Damping according to the modes of beam vibrations -- 8.5. Damping of Laminated Beams -- 8.6. Damping of Cloth Reinforced Laminates -- 8.7. Damping of Unidirectional Laminates with Interleaved ViscoelasticLayers -- 8.7.1. Materials -- 8.7.2. Experimental Results -- 8.7.3. Analysis of the Experimental Results -- 8.7.3.1. Dynamic Properties of the Viscoelastic Layers -- 8.7.3.2. Damping of the Glass Fibre Laminates with Interleaved Viscoelastic Layers -- 9. Dynamic Response of a Damped Composite Structure -- Conclusions -- References -- Chapter 3MECHANICAL STATES INDUCED BY MOISTUREDIFFUSION IN ORGANIC MATRIX COMPOSITES:COUPLED SCALE TRANSITION MODELS -- Abstract -- 1. Introduction -- 2. Effects of Moisture Dependent Constituents Propertieson the Hygroscopic Stresses Experienced by CompositeStructures -- 2.1. Inverse Scale Transition Modelling for the Identification of theHygro-Elastic Properties of One Constituent of a Composite Ply -- 2.1.1. Introduction -- 2.1.2. Estimating Constituents Properties from Eshelby-Kröner Self-consistentInverse Scale Transition Model -- 2.1.2.1. Introduction -- 2.1.2.2. Estimating the Effective Properties of a Composite Ply through Eshelby-KrönerSelf-consistent Model -- 2.1.2.3. Inverse Eshelby-Kröner Self-consistent Elastic Model -- 2.1.2.4. Application of Inverse Scale Transition Model to the Determinationof the Moisture and Temperature Dependent Pseudo-macroscopic ElasticProperties of Carbon-epoxy Composites -- 2.2. Multi-Scale Stresses Estimations in Composite Structures Accounting ofHygro-Mechanical Coupling for the Elastic Stiffness: T300/5208Composite Pipe Submitted to Environmental Conditions -- 2.3. Discussion about the Results -- 3. Stress-Dependent Moisture Diffusion in Composite Materials -- 3.1. Accounting for a Coupling between the Mechanical Statesand the Moisture Diffusion in Pure Organic Matrix.

3.1.1. Moisture Diffusion Coefficient -- 3.1.2. Maximum Moisture Absorption Capacity -- 3.2. Composite Materials -- 3.2.1. Modelling the Moisture Diffusion Process -- 3.2.2. Mechanical Modelling -- 3.3. Numerical Results -- 3.3.1. Effects of the Hygro-mechanical Coupling on the Main Parametersof the Diffusion Process -- 3.3.2. Predicted Multi-scale Mechanical States -- 4. Effect of Mechanical Loading on the Effective Behaviourof Polymer Matrix Composites -- 4.1. Introduction -- 4.2. Hygro-Mechanical Problem -- 4.2.1. Mechanical Problem -- 4.2.2. Calculation of the Matrix Free Volume -- 4.3. Effects of Mechanical Loading on the Diffusion Parameters -- 4.3.1. Effect of Mechanical Loading on the Moisture Content at Saturation -- 4.3.2. Effect of Mechanical Loading on the Gap Parameters at the InterfaceFiber/matrix -- 4.3.3. Effect of Mechanical Loading on the Diffusion Coefficients -- 4.4. Hygroscopic Problem -- 4.5. Moisture Content Estimation -- 5. Conclusion and Perspectives -- References -- Chapter 4FATIGUE AND FRACTURE OF SHORT FIBRECOMPOSITES EXPOSED TO EXTREMETEMPERATURES -- Abstract -- 1. Introduction -- 2. Fatigue and Fracture of Composite -- 2.1. Failure Mode of Composites -- De-bonding -- Interlaminar Failure -- Fibre Buckling -- Fibre Pull-out -- Fibre Breakage -- Cracking of Composites -- Micro-cracking of Composites -- 2.2. Fatigue Failure of Composites -- 3. Short Fibre Composites -- 3.1. Fibre Length and Orientation -- 3.2. Stress and Strain Distribution at Fibre -- 4. Mechanical Property Variation in Fatigue of Polymer BasedShort Fibre Composites -- 4.1. Residual Strength of Short Fibre Composites -- 4.2. Elastic Modulus of Short Fibre Composite Materials -- 4.2.1. Elastic Properties of Short Fibre Composite Materials Using Rule-of-Mixtures -- 5. Temperature Effect on the Thermosetting Polymer -- 5.1. Thermosetting Polymer.

Phenolic Resins -- Polyester Resins -- Epoxy Resins -- Vinylester Resins [18] -- 5.2. Failure of Thermosetting Composites by Temperature Effects -- 5.3. Variation in Modulus of Polymer Composites with Temperature -- The Glassy State (Region 1) -- The Glass Transition (Region 2) -- The Rubbery State (Region 3) -- The Liquid Flow Region (Region 4) -- 5.4. Glass Transition Temperature, g T -- 6. Fatigue Damage Modelling in Short-Fibre Composite -- 6.1. Micromechanical Model -- Critical Element &amp -- Damage Accumulation Concept -- 6.2. Phenomenological Model -- Combined Phenomenological Damage Model -- 7. Experimental Consideration and Verification Study -- 7.1. Experimental Variables -- 7.1.1. Stress Ratio, R -- 7.1.2. Loading Frequency -- 7.2. Experimentation and Verification Study -- 7.2.1. Experimental Program -- 7.2.2. Experimental Result and Verification of the Models Residual Strength -- Residual Stiffness -- 8. Conclusion -- References -- Chapter 5FATIGUE OF POLYMER MATRIX COMPOSITESAT ELEVATED TEMPERATURES -AREVIEW -- Abstract -- 1. Introduction -- 2. Fatigue Behaviour of PMC Materials -- 3. Development of High Temperature Polymers -- 4. Review of Elevated Temperature Fatigue Studies -- 4.1. Experimental -- 4.2. Prediction Modeling -- Conclusion -- 5.1. Experimental -- 5.2. Prediction Modeling -- 5.3. Current Research -- Acknowledgments -- References -- Chapter 6THE CLOSED FORM SOLUTIONS OF INFINITESIMALAND FINITE DEFORMATION OF 2-D LAMINATEDCURVED BEAMS OF VARIABLE CURVATURES -- Abstract -- 1. Introduction -- 2. Fundamental Equations -- 3. Solutions of Laminated Curved Beams of InfinitesimalDeformation -- 3.1. Laminated Curved Beam Theory: Infinitesimal Deformation -- 3.2. Laminate Curved Beam under Pure Bending -- 3.2.1. Circular Arc -- 3.2.2. Elliptic Arc -- 3.3. Laminate Curved Beams under Radial Load -- 3.3.1. Cycloid Curve.

3.4. Laminated Ring under Opposite Point Loads.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.