ORPP logo
Image from Google Jackets

Micro Electro Mechanical Systems (MEMS) : Technology, Fabrication Processes and Applications.

By: Contributor(s): Material type: TextTextSeries: Nanotechnology Science and TechnologyPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2010Copyright date: ©2011Edition: 1st edDescription: 1 online resource (405 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781613246986
Subject(s): Genre/Form: Additional physical formats: Print version:: Micro Electro Mechanical Systems (MEMS): Technology, Fabrication Processes and ApplicationsDDC classification:
  • 621
LOC classification:
  • TK7875 -- .M5284 2010eb
Online resources:
Contents:
Intro -- MICRO ELECTRO MECHANICAL SYSTEMS (MEMS): TECHNOLOGY, FABRICATION PROCESSES AND APPLICATIONS -- MICRO ELECTRO MECHANICAL SYSTEMS (MEMS): TECHNOLOGY, FABRICATION PROCESSES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 A SYSTEMATIC APPROACH FOR ANALYZING ELECTRONICALLY MONITORED ADHERENCE DATA -- Abstract -- Introduction -- I. Analysis of MEMS Adherence Data -- II. Example Analyses -- II.1. Unit Dispersion Analyses -- II.1.1. Individual-Subject Analyses -- II.1.2. Cluster Analyses -- II.1.3. Characterization of At Least Moderately High Mean Adherence -- II.1.4. Characterization of Very High Mean Adherence -- II.1.5. Summary of Unit Dispersion Analyses -- II.2. Adaptive Dispersion Analyses -- II.2.1. Individual-Subject Analyses -- II.2.2. Cluster Analyses -- II.2.3. Characterization of at Least High Adherence -- II.2.4. Summary of Adaptive Dispersion Analyses -- III. Adaptive Extended Quasi-Likelihood Modeling -- III.1. Background -- III.2. Extended Generalized Linear Modeling -- III.3. Extended Quasi-Likelihood Cross-Validation (Q+LCV) -- III.4. Extended Poisson Regression Modeling of MEMS Data -- III.5. Percent Consistency of Observed Adherence with Prescribed Adherence -- III.6. Heuristic Model Selection -- IV. Adaptive Cluster Analysis -- IV.1. Parameter Estimation -- IV.2. Likelihood Cross-Validation (LCV) for Cluster Analysis -- IV.3. Alternate Clustering Procedures -- IV.4. Clustering of MEMS Adherence Patterns -- V. SAS Macros for Analyzing Electronically Monitored Adherence Data -- V.1. Grouping Adherence Data -- V.2. Adaptive Modeling of Adherence over Time for One Subject -- V.3. Adaptive Modeling of Individual-Subject Adherence over Time for Multiple Subjects -- V.4. Adaptive Modeling of Adherence for All Subjects Combined Together -- V.5. Adaptive Clustering of Mean Adherence Patterns.
V.6. Adaptive Modeling of Cluster Membership -- V.7. Modeling Adherence Variability along with Mean Adherence -- Conclusion -- Acknowledgment -- References -- Chapter 2 DESIGN FOR RELIABILITY OF MICROMECHATRONIC STRUCTURAL SYSTEMS -- Abstract -- 1. Introduction -- 2. Electromechanical Coupling at Microscale -- 2.1. MEMS Typologies: Contactless and Smart Microsystems -- 2.2. Volume and Surface Electromechanical Coupling -- 2.3. Thermal Effects in MEMS -- 3. Structural Elements in MEMS -- 3.1. MEMS Compliance and Stiffness -- 3.2. MEMS Architecture and Constraints -- 4. Static Loading of Structural Elements in MEMS -- 4.1. Electromechanical Nonlinear Actions -- 4.2. Initial Residual Stress and Strain -- 4.3. Mechanical Coupling and Geometric Nonlinearity -- 4.4. Superposition of Different Phenomena -- 4.5. Structural Buckling -- 4.6. Critical Issues and Approaches in Numerical Modelling of Static Loading in MEMS -- 5. Dynamic Loading of Structural Elements in MEMS -- 5.1. Observed Phenomena -- 5.2. Dynamic Electromechanical Coupling -- 6. Other Electromechanical Couplings in MEMS -- 6.1. Microsystems Based on Smart Materials -- 6.2. Microsystems Based on Magnetic Actions -- 7. Thermo-Mechanical Behaviour -- 7.1. Effects of Constraints and Thermal Stress -- 7.2. Material Behaviour in Presence of Thermal Stress -- 7.3. Material Behaviour in Presence of Thermal Fatigue and Creep -- 7.4. Combined Thermo-Mechanical Excitation and Phase Analysis -- 8. Mechanical and Thermal Fatigue -- 8.1. Mechanical Excitation -- 8.2. Thermo-mechanical Excitation -- 8.3. Role of Oxidation in Fatigue Crack Generation and Propagation -- 8.4. Combined Creep and Thermal Fatigue -- 8.5. Thermo-Mechanical Effects on the MEMS Material -- 8.6. Comparison between Thermo-Mechanical and Mechanical Fatigue -- 9. Modelling Thermo-Mechanical Fatigue.
9.1. Life Prediction in Presence of Combined Thermo-Mechanical Fatigue -- 9.2. Crack Propagation Induced by Thermo-Mechanical Fatigue -- 10. Experimental Testing for Reliability Prediction in MEMS -- 10.1. Damage Prevention -- 10.2. Morphological Analysis -- 10.3. Material Characterization -- 10.4. Static Functionality -- 10.5. Dynamic Functionality -- 10.6. Fatigue -- Aknowledgement -- About the Author -- References -- Chapter 3 POWER MEMS: AN IMPORTANT CATEGORY OF MEMS -- Abstract -- 1. Introduction -- 2. Micro Thermophotovoltaic (TPV) Power Generator -- 2.1. Introduction -- 2.2. Effect of Backward Facing Step Height -- 2.3. Effect of Wall Thickness -- 2.4. Effect of Flow Rate -- 2.5. Effect of Combustion Chamber -- 2.6. Effect of Fuel/oxidant Mixture Type -- 3. Micro Direct Methanol Fuel Cell (DMFC) -- 3.1. Introduction -- 3.2. Effect of Current Collector Structure on Micro DMFC -- 3.3. Effect of Methanol Concentration on Micro DMFC -- 3.4. Effect of Operating Temperature on Micro DMFC -- 4. MEMS Based Solid Propellant Micropropulsion Systems -- 4.1. Introduction -- 4.2. Three-layer Sandwich Design of Solid Propellant Microthruster -- 4.3. Two-layer Building Block Design of Solid Propellant Microthruster -- 4.4. Fabrication of the Two-layer Building Block Microthruster -- 4.5. Combustion and Thrust Tests of the Two-layer Building Block Microthruster -- 4.6. Ignition Study of the Two-layer Building Block Microthruster -- 5. Micro Scale Combustion -- 5.1. Introduction -- 5.2. Key Issues and Major Challenges -- 5.3. Progress so Far -- 5.4. Practical Micro-combustors -- Swiss-roll Micro-combustors -- Cylindrical Tubes with Backward-facing Steps -- 5.5. Future Work -- 5.5.1. Catalyzed Micro-combustion -- 5.5.2. Filtration (Porous Media) Micro-combustion -- 6. Other Power MEMS Systems -- 6.1. Micro Heat Engine.
6.2. Thermoelectric Micro Power Generator and Micro Cooler -- 6.3. Mechanical Energy Scavengers -- 6.4. Nano Energetic Material Based Power MEMS Systems -- 7. Conclusion -- References -- Chapter 4 STRUCTURE AND STABILITY OF SILICON CLUSTERS STABILIZED BY HYDROGEN AT HIGH TEMPERATURES -- Abstract -- 1. Introduction -- 2. Application of Silicon Nanoparticles and Processes of Their Production -- 3. Potential Functions for Covalent Bonds -- 4. Representation of the Si-H and H-H Interactions -- 5. The Molecular Dynamics Model -- 5.1. 73Si Nanoparticles -- 5.2. 73Si Nanoparticles Surrounded by Hydrogen -- 5.3.60Si Fullerenes Stabilized with Hydrogen -- 6. Silicon-Silicon Bond Angles -- 7. Phase Transition in Nanoparticle 73Si -- 8. The Influence of Hydrogen on the Stability of 73Si Nanoparticles -- 9. Structure of 73Si Nanoparticles in the Presence of Hydrogen on their Surface -- 10. Structure of 60Si Clusters in the Presence of Hydrogen -- 11. Parameters of the Si-Si Bonds in 60Si Clusters Stabilized with Hydrogen -- 12. Coefficients of Diffusion and Linear Expansion -- 13. Conclusion -- Acknowledgments -- References -- Chapter 5 DESIGN OF OPTICAL MEMS FOR TRANSPARENT BIOLOGICAL CELL CHARACTERIZATION -- Abstract -- 1. Introduction -- 2. Device Design -- 3. Theory -- 4. Critical Gap -- 5. Shape of the Aperture -- 6. Shape of the Chamber -- 7. Extrapolating the Refractive Index -- 8. Limit of Detection -- 9. Experiment -- 10. Conclusion -- References -- Chapter 6 NANOMOTORS ACTUATED BY PHONON CURRENT -- Abstract -- 1. Introduction -- 2. Theoretical Mechanism -- 2.1. Thermomass of Phonon Gas -- 2.2. Hydrodynamics of Thermomass Motion -- 2.3. Actuation by Phonon Current -- 3. CNTS Based Nanomotors -- 3.1. MD Simulation Details -- 3.2. Operation Behaviors -- 4. Conclusion -- Acknowledgment -- References.
Chapter 7 TANGENTIAL NANOFRETTING AND RADIAL NANOFRETTING -- Abstract -- 1. Introduction -- 2. Tangential Nanofretting -- 2.1. The Effect of Adhesion Force on the Regimes of Tangential Nanofretting [9] -- 2.2. The Damage Mode of Tangential Nanofretting [10] -- 2.3. The Transition between Two Damage Modes -- 2.4. Comparison of Tangential Nanofretting and Fretting [1] -- 2.5. Comparison of Nanofretting in Atmosphere and in Vacuum -- 3. Radial Nanofretting -- 3.1. Radial Nanofretting on Silicon and Copper [11] -- 3.2. Radial Nanofretting on 40Cr Steel and its CrNx Coating [12] -- 3.3. Effect of Equivalent Radius of Indenter on Radial Nanofretting [13] -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8 ADAPTIVE POISSON MODELING OF MEDICATION ADHERENCE AMONG HIV-POSITIVE METHADONE PATIENTS PROVIDED GREATER UNDERSTANDING OF BEHAVIOR -- Abstract -- Objective -- Study Design and Setting -- Results -- Conclusions -- Introduction -- Methods -- Health Incentives Project -- Overview of the Modeling Process -- Data Reduction -- Data Modeling -- Model Evaluation -- Model Selection -- Overall Adherence Assessment -- Intervention Phase Mean Adherence Clusters -- Results -- Individual-Subject Overall Mean Adherence Patterns -- Summary Adherence Measures: Percent Consistency versus Percent Prescribed Doses Taken (PDT) -- Association of Summary Adherence Measures with Study Group -- Intervention Phase Adherence -- Intervention Phase Mean Adherence Pattern Types -- Conclusion -- Acknowledgments -- References -- Chapter 9 ROBUST ADAPTIVE CONTROL FOR MEMS VIBRATORY GYROSCOPE -- Abstract -- 1. Introduction -- 2. Dynamics of MEMS Gyroscope -- 3. Adaptive Sliding Mode Controller -- 3.1. Adaptive Sliding Mode Controller Design and Stability Analysis -- 3.2. Comparison with Standard Adaptive Controller.
3.3. Adaptive Sliding Mode Design under Asymmetric Coupling Term.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- MICRO ELECTRO MECHANICAL SYSTEMS (MEMS): TECHNOLOGY, FABRICATION PROCESSES AND APPLICATIONS -- MICRO ELECTRO MECHANICAL SYSTEMS (MEMS): TECHNOLOGY, FABRICATION PROCESSES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 A SYSTEMATIC APPROACH FOR ANALYZING ELECTRONICALLY MONITORED ADHERENCE DATA -- Abstract -- Introduction -- I. Analysis of MEMS Adherence Data -- II. Example Analyses -- II.1. Unit Dispersion Analyses -- II.1.1. Individual-Subject Analyses -- II.1.2. Cluster Analyses -- II.1.3. Characterization of At Least Moderately High Mean Adherence -- II.1.4. Characterization of Very High Mean Adherence -- II.1.5. Summary of Unit Dispersion Analyses -- II.2. Adaptive Dispersion Analyses -- II.2.1. Individual-Subject Analyses -- II.2.2. Cluster Analyses -- II.2.3. Characterization of at Least High Adherence -- II.2.4. Summary of Adaptive Dispersion Analyses -- III. Adaptive Extended Quasi-Likelihood Modeling -- III.1. Background -- III.2. Extended Generalized Linear Modeling -- III.3. Extended Quasi-Likelihood Cross-Validation (Q+LCV) -- III.4. Extended Poisson Regression Modeling of MEMS Data -- III.5. Percent Consistency of Observed Adherence with Prescribed Adherence -- III.6. Heuristic Model Selection -- IV. Adaptive Cluster Analysis -- IV.1. Parameter Estimation -- IV.2. Likelihood Cross-Validation (LCV) for Cluster Analysis -- IV.3. Alternate Clustering Procedures -- IV.4. Clustering of MEMS Adherence Patterns -- V. SAS Macros for Analyzing Electronically Monitored Adherence Data -- V.1. Grouping Adherence Data -- V.2. Adaptive Modeling of Adherence over Time for One Subject -- V.3. Adaptive Modeling of Individual-Subject Adherence over Time for Multiple Subjects -- V.4. Adaptive Modeling of Adherence for All Subjects Combined Together -- V.5. Adaptive Clustering of Mean Adherence Patterns.

V.6. Adaptive Modeling of Cluster Membership -- V.7. Modeling Adherence Variability along with Mean Adherence -- Conclusion -- Acknowledgment -- References -- Chapter 2 DESIGN FOR RELIABILITY OF MICROMECHATRONIC STRUCTURAL SYSTEMS -- Abstract -- 1. Introduction -- 2. Electromechanical Coupling at Microscale -- 2.1. MEMS Typologies: Contactless and Smart Microsystems -- 2.2. Volume and Surface Electromechanical Coupling -- 2.3. Thermal Effects in MEMS -- 3. Structural Elements in MEMS -- 3.1. MEMS Compliance and Stiffness -- 3.2. MEMS Architecture and Constraints -- 4. Static Loading of Structural Elements in MEMS -- 4.1. Electromechanical Nonlinear Actions -- 4.2. Initial Residual Stress and Strain -- 4.3. Mechanical Coupling and Geometric Nonlinearity -- 4.4. Superposition of Different Phenomena -- 4.5. Structural Buckling -- 4.6. Critical Issues and Approaches in Numerical Modelling of Static Loading in MEMS -- 5. Dynamic Loading of Structural Elements in MEMS -- 5.1. Observed Phenomena -- 5.2. Dynamic Electromechanical Coupling -- 6. Other Electromechanical Couplings in MEMS -- 6.1. Microsystems Based on Smart Materials -- 6.2. Microsystems Based on Magnetic Actions -- 7. Thermo-Mechanical Behaviour -- 7.1. Effects of Constraints and Thermal Stress -- 7.2. Material Behaviour in Presence of Thermal Stress -- 7.3. Material Behaviour in Presence of Thermal Fatigue and Creep -- 7.4. Combined Thermo-Mechanical Excitation and Phase Analysis -- 8. Mechanical and Thermal Fatigue -- 8.1. Mechanical Excitation -- 8.2. Thermo-mechanical Excitation -- 8.3. Role of Oxidation in Fatigue Crack Generation and Propagation -- 8.4. Combined Creep and Thermal Fatigue -- 8.5. Thermo-Mechanical Effects on the MEMS Material -- 8.6. Comparison between Thermo-Mechanical and Mechanical Fatigue -- 9. Modelling Thermo-Mechanical Fatigue.

9.1. Life Prediction in Presence of Combined Thermo-Mechanical Fatigue -- 9.2. Crack Propagation Induced by Thermo-Mechanical Fatigue -- 10. Experimental Testing for Reliability Prediction in MEMS -- 10.1. Damage Prevention -- 10.2. Morphological Analysis -- 10.3. Material Characterization -- 10.4. Static Functionality -- 10.5. Dynamic Functionality -- 10.6. Fatigue -- Aknowledgement -- About the Author -- References -- Chapter 3 POWER MEMS: AN IMPORTANT CATEGORY OF MEMS -- Abstract -- 1. Introduction -- 2. Micro Thermophotovoltaic (TPV) Power Generator -- 2.1. Introduction -- 2.2. Effect of Backward Facing Step Height -- 2.3. Effect of Wall Thickness -- 2.4. Effect of Flow Rate -- 2.5. Effect of Combustion Chamber -- 2.6. Effect of Fuel/oxidant Mixture Type -- 3. Micro Direct Methanol Fuel Cell (DMFC) -- 3.1. Introduction -- 3.2. Effect of Current Collector Structure on Micro DMFC -- 3.3. Effect of Methanol Concentration on Micro DMFC -- 3.4. Effect of Operating Temperature on Micro DMFC -- 4. MEMS Based Solid Propellant Micropropulsion Systems -- 4.1. Introduction -- 4.2. Three-layer Sandwich Design of Solid Propellant Microthruster -- 4.3. Two-layer Building Block Design of Solid Propellant Microthruster -- 4.4. Fabrication of the Two-layer Building Block Microthruster -- 4.5. Combustion and Thrust Tests of the Two-layer Building Block Microthruster -- 4.6. Ignition Study of the Two-layer Building Block Microthruster -- 5. Micro Scale Combustion -- 5.1. Introduction -- 5.2. Key Issues and Major Challenges -- 5.3. Progress so Far -- 5.4. Practical Micro-combustors -- Swiss-roll Micro-combustors -- Cylindrical Tubes with Backward-facing Steps -- 5.5. Future Work -- 5.5.1. Catalyzed Micro-combustion -- 5.5.2. Filtration (Porous Media) Micro-combustion -- 6. Other Power MEMS Systems -- 6.1. Micro Heat Engine.

6.2. Thermoelectric Micro Power Generator and Micro Cooler -- 6.3. Mechanical Energy Scavengers -- 6.4. Nano Energetic Material Based Power MEMS Systems -- 7. Conclusion -- References -- Chapter 4 STRUCTURE AND STABILITY OF SILICON CLUSTERS STABILIZED BY HYDROGEN AT HIGH TEMPERATURES -- Abstract -- 1. Introduction -- 2. Application of Silicon Nanoparticles and Processes of Their Production -- 3. Potential Functions for Covalent Bonds -- 4. Representation of the Si-H and H-H Interactions -- 5. The Molecular Dynamics Model -- 5.1. 73Si Nanoparticles -- 5.2. 73Si Nanoparticles Surrounded by Hydrogen -- 5.3.60Si Fullerenes Stabilized with Hydrogen -- 6. Silicon-Silicon Bond Angles -- 7. Phase Transition in Nanoparticle 73Si -- 8. The Influence of Hydrogen on the Stability of 73Si Nanoparticles -- 9. Structure of 73Si Nanoparticles in the Presence of Hydrogen on their Surface -- 10. Structure of 60Si Clusters in the Presence of Hydrogen -- 11. Parameters of the Si-Si Bonds in 60Si Clusters Stabilized with Hydrogen -- 12. Coefficients of Diffusion and Linear Expansion -- 13. Conclusion -- Acknowledgments -- References -- Chapter 5 DESIGN OF OPTICAL MEMS FOR TRANSPARENT BIOLOGICAL CELL CHARACTERIZATION -- Abstract -- 1. Introduction -- 2. Device Design -- 3. Theory -- 4. Critical Gap -- 5. Shape of the Aperture -- 6. Shape of the Chamber -- 7. Extrapolating the Refractive Index -- 8. Limit of Detection -- 9. Experiment -- 10. Conclusion -- References -- Chapter 6 NANOMOTORS ACTUATED BY PHONON CURRENT -- Abstract -- 1. Introduction -- 2. Theoretical Mechanism -- 2.1. Thermomass of Phonon Gas -- 2.2. Hydrodynamics of Thermomass Motion -- 2.3. Actuation by Phonon Current -- 3. CNTS Based Nanomotors -- 3.1. MD Simulation Details -- 3.2. Operation Behaviors -- 4. Conclusion -- Acknowledgment -- References.

Chapter 7 TANGENTIAL NANOFRETTING AND RADIAL NANOFRETTING -- Abstract -- 1. Introduction -- 2. Tangential Nanofretting -- 2.1. The Effect of Adhesion Force on the Regimes of Tangential Nanofretting [9] -- 2.2. The Damage Mode of Tangential Nanofretting [10] -- 2.3. The Transition between Two Damage Modes -- 2.4. Comparison of Tangential Nanofretting and Fretting [1] -- 2.5. Comparison of Nanofretting in Atmosphere and in Vacuum -- 3. Radial Nanofretting -- 3.1. Radial Nanofretting on Silicon and Copper [11] -- 3.2. Radial Nanofretting on 40Cr Steel and its CrNx Coating [12] -- 3.3. Effect of Equivalent Radius of Indenter on Radial Nanofretting [13] -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8 ADAPTIVE POISSON MODELING OF MEDICATION ADHERENCE AMONG HIV-POSITIVE METHADONE PATIENTS PROVIDED GREATER UNDERSTANDING OF BEHAVIOR -- Abstract -- Objective -- Study Design and Setting -- Results -- Conclusions -- Introduction -- Methods -- Health Incentives Project -- Overview of the Modeling Process -- Data Reduction -- Data Modeling -- Model Evaluation -- Model Selection -- Overall Adherence Assessment -- Intervention Phase Mean Adherence Clusters -- Results -- Individual-Subject Overall Mean Adherence Patterns -- Summary Adherence Measures: Percent Consistency versus Percent Prescribed Doses Taken (PDT) -- Association of Summary Adherence Measures with Study Group -- Intervention Phase Adherence -- Intervention Phase Mean Adherence Pattern Types -- Conclusion -- Acknowledgments -- References -- Chapter 9 ROBUST ADAPTIVE CONTROL FOR MEMS VIBRATORY GYROSCOPE -- Abstract -- 1. Introduction -- 2. Dynamics of MEMS Gyroscope -- 3. Adaptive Sliding Mode Controller -- 3.1. Adaptive Sliding Mode Controller Design and Stability Analysis -- 3.2. Comparison with Standard Adaptive Controller.

3.3. Adaptive Sliding Mode Design under Asymmetric Coupling Term.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.