ORPP logo
Image from Google Jackets

Handbook of Material Science Research.

By: Contributor(s): Material type: TextTextSeries: Materials Science and TechnologiesPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2010Copyright date: ©2010Edition: 1st edDescription: 1 online resource (552 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781611225365
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of Material Science ResearchDDC classification:
  • 620.1/1
LOC classification:
  • TA404.2 -- .H36 2010eb
Online resources:
Contents:
Intro -- HANDBOOK OF MATERIAL SCIENCE RESEARCH -- HANDBOOK OF MATERIAL SCIENCE RESEARCH -- CONTENTS -- PREFACE -- Chapter 1 DIELECTRIC SPECTROSCOPY OF DIPOLAR GLASSES AND RELAXORS -- ABSTRACT -- 1. OVERVIEW -- 1.1. Ferroelectrics -- 1.1.1. Ginzburg-Landau Theory -- Second Order Phase Transition -- First Order Phase Transition -- 1.1.2. Soft Mode Concept -- 1.1.3. Dielectric Dispersion in Ferroelectrics -- 1.2. Dipolar Glasses -- 1.2.1. Introduction -- 1.2.2. Models of Spin Glasses -- 1.2.3. Random Bond-random Field Theory -- 1.3. Ferroelectric Relaxors -- 1.3.1. Introduction -- 1.3.2. Compositional Order-disorder Phase Transitions and Quenched Disorder in Complex Perovskites -- 1.3.3. Relaxors in the Ergodic State -- 1.3.4. Glassy Nonergodic Relaxor Phase -- 1.3.4. Theoretical Description of Nonergodic Phase in Relaxors -- 1.4. Dielectric Dispersion in Disordered Materials -- 1.4.1. Various Predefined Dielectric Relaxation Functions -- 1.4.2. Distribution of Relaxation Times in Disordered Solids -- 2. BROADBAND DIELECTRIC SPECTROSCOPY -- 2.1. Low Frequency Measurements -- 2.2. High Frequency Measurements -- 2.2.1. Experimental Details -- 2.2.2. Complex Dielectric Permittivity Estimation -- 2.3. Method of Thin Cylindrical Rod in Rectangular Waveguide -- 2.3.1. Microwave Reflectivity and Transmission Measurements -- 2.3.3. Calculation of Complex Dielectric Permittivity -- 2.3.4. Sample Preparation -- 2.4. Dielectric Data Analysis -- 2.4.1. Tichonov Regularization Method -- 2.4.2. Debye Program -- 2.4.3. Simulation Results -- 2.4.4. The Reguliarization Parameter -- 3. DYNAMICS OF PHASE TRANSITIONS OF BPXBPI1-X MIXED CRYSTALS -- 3.1. Influence of Small Amount of Betaine Phosphate Admixture to Dielectric Dispersion of Betaine Phosphite Crystals -- 3.1.1. Introduction -- 3.1.2. Ferroelectric Phase Transition Region.
3.1.3. Coexistence of Ferroelectric Order and Dipolar Glass Disorder -- 3.2. BP1-xBPIx - An Unusual Dipolar Glass -- 3.2.1 Introduction -- 3.2.2. Comparison of the Results with the Dipolar Glass Model -- 3.3.3. Discussion -- 4. BROADBAND DIELECTRIC SPECTROSCOPY OF PMN-PSN-PZN RELAXORS -- 4.1. Dielectric Spectroscopy of PMN-PSN-PZN Ceramics -- 4.1.1. Introduction -- 4.1.2. Broadband Dielectric Studies of PMN-PSN-PZN Ceramics -- 4.1.3. THz Dielectric Spectra of PMN-PZN-PSN Ceramics -- 4.1.4. Influence of AC Electric Field to Dielectric Dispersion of PMN-PSN-PZN Ceramics -- 4.2. Far-infrared Spectroscopy of PMN-PSN-PZN Ceramics -- 4.2.1. Infrared Reflectivity of PMN-PSN-PZN Ceramics -- 4.2.2 Phonon Modes of PMN-PSN-PZN Ceramics -- CONCLUSION -- REFERENCES -- Chapter 2 MODIFICATION OF STEEL'S MICROHARDNESS BY COMPRESSION PLASMA FLOWS -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Some Peculiarities of Microhardness Testing -- 1.2. High-Power Ion Beams -- 1.3. High-Current Electron Beams -- 1.4. Intense Pulsed Plasma Beams -- 2. EXPERIMENTAL -- 3. CPF TREATMENT OF ARMCO-IRON -- 4. CPF TREATMENT OF CARBON STEELS -- 4.1. Direct Treatment -- 4.2. Alloying By Mixing of a "Coating/Substrate" System -- 4.3. Alloying by Injection of an Additional Component into a Plasma Flow -- 5. CPF TREATMENT OF HIGH-ALLOYED STEELS -- 5.1. Direct Treatment -- 5.2. Alloying by Mixing of a "Coating/Substrate" System -- 6. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 PERCOLATION PROCESSES IN CUPRATE COMPOSITES AS LOW-DIMENSIONAL SYSTEMS -- ABSTRACT -- 1. INTRODUCTION -- 2. PERCOLATION PROCESSES IN TWO-PHASE COMPOSITES -- 2.1. Percolation Transition and the Critical Behavior of Physical Properties -- 2.2. Power Law Based on the Scaling Hypothesis and Structure Model for Critical Exponent -- 2.3. Generalized Effective Medium Model Describing the Percolation Transition.
2.4. Summary -- 3. PERCOLATION PROCESSES OF CLUSTERING IN CUPRATE COMPOSITE Ag-ADDED Bi-2223 -- 3.1. Anisotropic Structure of Bi-Based Cuprate (Bi-2223) and Properties of Two-Phase Composite Ag-Added Bi-2223 -- 3.2. Preparation of Two-Phase Composite Ag-Added Bi-2223 and the Superconducting Characters -- 3.3. Percolative Clustering of Ag Grains in Composite Bi-2223/Ag and the Power Low -- 3.4. Clustering of Bi-2223 Grains in Composite Bi-2223/Ag and the Power Low -- 3.5. Summary -- 4. CHARACTERIZATION OF COMPOSITES IN TERMS OF PERCOLATION -- 4.1. Effect of Conductivity Ratio on the Power Law -- 4.2. Clustering Processes of Superconducting Bi-2223 Phase -- 4.3. Textural Asymmetry Affecting the Percolation Threshold -- 4.4. Summary -- 5. MICROSCOPIC PERCOLATION PROCESS IN MIXED-CRYSTALLINE COMPOUND R1-xPrxBa2Cu3O7-δ (R: RARE EARTH) -- 5.1. Two-Dimensionality of the Superconducting Paths in Nanocomposite R1-xPrxBa2Cu3O7-δ -- 5.2. Model of Nonclassical Percolation with the Aid of Orbital Hybridization in the Nanostructure of RPr-123 -- 5.3. Effect of Ionic Size on the Superconductor-Insulator Transition in RPr-123 -- 5.4. Summary -- 6. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 DIELECTRIC AND ULTRASONIC SPECTROSCOPY OF QUASI TWO-DIMENSIONAL CUINP2(SXSE1-X)6 MIXED CRYSTALS -- ABSTRACT -- 1. DIELECTRIC INVESTIGATION OF PHASE TRANSITIONS IN PURE CUINP2S6 AND CUINP2SE6 CRYSTALS -- 1.1. Phase Transitions in CuInP2S6 and CuInP2Se6 Crystals -- 1.2. Dielectric Studies of CuInP2S6 and CuInP2Se6 Crystals -- 1.2. Investigation of Ionic Conductivity in Mixed CuInP2(SxSe1-x)6 Crystals -- 1.2.1. Introduction -- 1.2.2. Ionic Conductivity of Mixed CuInP2(SxSe1-x)6 Crystals -- 1.3. Dynamics of Phase Transitions in Mixed CuInP2(SxSe1-x)6 Crystals -- 1.3.1. Influence of Small Amount of Sulphur to Dielectric Dispersion in CuInP2Se6 Crystals.
1.3.2. Crossover between Ferroelectric Order and Dipolar Glass Disorder -- 1.3.3. Dielectric Dispersion in Disordered Materials -- 1.3.4. Various Predefined Dielectric Relaxation Functions -- 1.3.5. Tichonov Regularization Method -- 1.3.6. Distribution of the Relaxtion Times -- 1.3.7. Dipolar Glass Disorder in Mixed CuInP2(SxSe1-x)6 Crystals with x=0.4-0.8 -- 1.3.8. Influence of Small Amount of Selenium to Dielectric Dispersion in CuInP2S6 Crystals -- 2. ULTRASONIC SPECTROSCOPY OF PHASE TRANSITIONS IN CUINP2(SXSE1-X)6 MIXED CRYSTALS -- 2.1. Introduction to Ultrasonic Behavior at the Ferroelectric Phase Transition -- 2.2. Ultrasonic Studies of CuInP2S6 and CuInP2Se6 and Mixed CuInP2(SxSe1-x)6 Crystals -- 2.3. Nonlinear Elastic Properties of Layered CuInP2S6 Crystals -- 2.3. Ultrasonic Method for Investigation of Piezoelectric and Ferroelectric Properties of CuInP2S6, CuInP2Se6 and Mixed CuInP2(SxSe1-x)6 Crystals -- CONCLUSION -- REFERENCES -- Chapter 5 UNRAVELLING XDT: STUDIES OF SOME RARE, BUT VIOLENT, EXPLOSIONS WITH STATISTICAL CRACK MECHANICS -- ABSTRACT -- INTRODUCTION -- XDT-THE ANOMALOUS EXPLOSIONS OF JENNINGS, BLOMMER AND BROWN -- STATISTICAL CRACK MECHANICS (SCRAM) -- Large Deformations -- Statistics -- Crack Stability and Speed -- A THEORETICAL APPROACH TO XDT AND HMX SENSITIVITY -- Burn -- CONCLUSION -- APPENDIX -- Comparison of Tensile and Compressive Strength -- REFERENCES -- Chapter 6 MAGNETIC PROPERTIES OF LAYERED TITANIUM DICHALCOGENIDES INTERCALATED WITH 3D- AND 4F-METALS -- ABSTRACT -- 1. INTRODUCTION -- 2. SAMPLE PREPARATION AND PECULIARITIES OF THE CRYSTAL STRUCTURE -- 3. INFLUENCE OF THE 3D METAL INTERCALATION ON MAGNETIC PROPERTIES OF TIX2 COMPOUNDS -- 3.1. VxTiX2 -- 3.2. CrxTiX2 -- 3.3. MnxTiX2 -- 3.4. FexTiX2 -- 3.5. CoxTiX2 -- 3.6. NixTiX2.
3.7. The Formation of Magnetic Moments and Magnetic Ordering in MxTiSe2 Depending on the Type of M Ions Intercalated -- 4. MAGNETIC PROPERTIES OF TITANIUM DICHALCOGENIDES INTERCALATED WITH RARE EARTHS -- 5. CONCLUDING REMARKS -- REFERENCES -- Chapter 7 ENERGETIC MATERIALS: CRYSTALLIZATION AND CHARACTERIZATION -- ABSTRACT -- INTRODUCTION -- CRYSTALLIZATION OF ENERGETIC MATERIALS -- CHARACTERIZATION OF ENERGETIC MATERIALS / COMPOSITIONS -- OUTLOOK -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 ELECTRODEPOSITION AND CORROSION PROPERTIES OF ZN-CO AND ZN-CO-FE ALLOY COATINGS -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 2.1. Base Material and Surface Preparation -- 2.2. Electrolyte composition for Zn-Co electrodeposition studies -- 2.3. Electrodeposition Parameter Settings for Electrochemical Studies -- 2.4. Zn-Co Electrodeposition Studies by Cathodic Polarization Measurements -- 2.5. Electrochemical Studies of Sacrificial Properties of Zn-Co and Zn-Co-Fe Coatings -- 2.6. Electrochemical Studies of Barrier Properties of Zn-Co and Zn-Co-Fe Coatings -- 2.6.1. Potentiodynamic Polarization Measurements -- 2.6.2. Linear Polarization Measurements -- 2.7. Salt Spray Testing -- 3. RESULTS AND DISCUSSION -- 3.1. Zn-Co Electrodeposition Studies by Cathodic Polarization Measurements -- 3.2. Electrochemical Studies of Sacrificial Properties of Zn-Co and Zn-Co-Fe Coatings -- 3.3. Electrochemical Studies of Barrier Properties of Zn-Co and Zn-Co-Fe Coatings -- 3.3.1. Potentiodynamic Polarization Measurement -- 3.3.2. Linear Polarization Measurements -- 3.4. Salt Spray Testing -- 3.5. X-ray Diffraction of Zn-Co-Fe Coatings -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 QUASI ONE-DIMENSIONAL CDSE NANOWIRES: GROWTH, STRUCTURE, AND POLARIZED PHOTOLUMINESCENCE -- I. THE PREPARATION OF METASTABLE 1D CDSE NANOSTRUCTURES.
II. CONTROLLED GROWTH OF CDSE NANOIWRES.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- HANDBOOK OF MATERIAL SCIENCE RESEARCH -- HANDBOOK OF MATERIAL SCIENCE RESEARCH -- CONTENTS -- PREFACE -- Chapter 1 DIELECTRIC SPECTROSCOPY OF DIPOLAR GLASSES AND RELAXORS -- ABSTRACT -- 1. OVERVIEW -- 1.1. Ferroelectrics -- 1.1.1. Ginzburg-Landau Theory -- Second Order Phase Transition -- First Order Phase Transition -- 1.1.2. Soft Mode Concept -- 1.1.3. Dielectric Dispersion in Ferroelectrics -- 1.2. Dipolar Glasses -- 1.2.1. Introduction -- 1.2.2. Models of Spin Glasses -- 1.2.3. Random Bond-random Field Theory -- 1.3. Ferroelectric Relaxors -- 1.3.1. Introduction -- 1.3.2. Compositional Order-disorder Phase Transitions and Quenched Disorder in Complex Perovskites -- 1.3.3. Relaxors in the Ergodic State -- 1.3.4. Glassy Nonergodic Relaxor Phase -- 1.3.4. Theoretical Description of Nonergodic Phase in Relaxors -- 1.4. Dielectric Dispersion in Disordered Materials -- 1.4.1. Various Predefined Dielectric Relaxation Functions -- 1.4.2. Distribution of Relaxation Times in Disordered Solids -- 2. BROADBAND DIELECTRIC SPECTROSCOPY -- 2.1. Low Frequency Measurements -- 2.2. High Frequency Measurements -- 2.2.1. Experimental Details -- 2.2.2. Complex Dielectric Permittivity Estimation -- 2.3. Method of Thin Cylindrical Rod in Rectangular Waveguide -- 2.3.1. Microwave Reflectivity and Transmission Measurements -- 2.3.3. Calculation of Complex Dielectric Permittivity -- 2.3.4. Sample Preparation -- 2.4. Dielectric Data Analysis -- 2.4.1. Tichonov Regularization Method -- 2.4.2. Debye Program -- 2.4.3. Simulation Results -- 2.4.4. The Reguliarization Parameter -- 3. DYNAMICS OF PHASE TRANSITIONS OF BPXBPI1-X MIXED CRYSTALS -- 3.1. Influence of Small Amount of Betaine Phosphate Admixture to Dielectric Dispersion of Betaine Phosphite Crystals -- 3.1.1. Introduction -- 3.1.2. Ferroelectric Phase Transition Region.

3.1.3. Coexistence of Ferroelectric Order and Dipolar Glass Disorder -- 3.2. BP1-xBPIx - An Unusual Dipolar Glass -- 3.2.1 Introduction -- 3.2.2. Comparison of the Results with the Dipolar Glass Model -- 3.3.3. Discussion -- 4. BROADBAND DIELECTRIC SPECTROSCOPY OF PMN-PSN-PZN RELAXORS -- 4.1. Dielectric Spectroscopy of PMN-PSN-PZN Ceramics -- 4.1.1. Introduction -- 4.1.2. Broadband Dielectric Studies of PMN-PSN-PZN Ceramics -- 4.1.3. THz Dielectric Spectra of PMN-PZN-PSN Ceramics -- 4.1.4. Influence of AC Electric Field to Dielectric Dispersion of PMN-PSN-PZN Ceramics -- 4.2. Far-infrared Spectroscopy of PMN-PSN-PZN Ceramics -- 4.2.1. Infrared Reflectivity of PMN-PSN-PZN Ceramics -- 4.2.2 Phonon Modes of PMN-PSN-PZN Ceramics -- CONCLUSION -- REFERENCES -- Chapter 2 MODIFICATION OF STEEL'S MICROHARDNESS BY COMPRESSION PLASMA FLOWS -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Some Peculiarities of Microhardness Testing -- 1.2. High-Power Ion Beams -- 1.3. High-Current Electron Beams -- 1.4. Intense Pulsed Plasma Beams -- 2. EXPERIMENTAL -- 3. CPF TREATMENT OF ARMCO-IRON -- 4. CPF TREATMENT OF CARBON STEELS -- 4.1. Direct Treatment -- 4.2. Alloying By Mixing of a "Coating/Substrate" System -- 4.3. Alloying by Injection of an Additional Component into a Plasma Flow -- 5. CPF TREATMENT OF HIGH-ALLOYED STEELS -- 5.1. Direct Treatment -- 5.2. Alloying by Mixing of a "Coating/Substrate" System -- 6. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 PERCOLATION PROCESSES IN CUPRATE COMPOSITES AS LOW-DIMENSIONAL SYSTEMS -- ABSTRACT -- 1. INTRODUCTION -- 2. PERCOLATION PROCESSES IN TWO-PHASE COMPOSITES -- 2.1. Percolation Transition and the Critical Behavior of Physical Properties -- 2.2. Power Law Based on the Scaling Hypothesis and Structure Model for Critical Exponent -- 2.3. Generalized Effective Medium Model Describing the Percolation Transition.

2.4. Summary -- 3. PERCOLATION PROCESSES OF CLUSTERING IN CUPRATE COMPOSITE Ag-ADDED Bi-2223 -- 3.1. Anisotropic Structure of Bi-Based Cuprate (Bi-2223) and Properties of Two-Phase Composite Ag-Added Bi-2223 -- 3.2. Preparation of Two-Phase Composite Ag-Added Bi-2223 and the Superconducting Characters -- 3.3. Percolative Clustering of Ag Grains in Composite Bi-2223/Ag and the Power Low -- 3.4. Clustering of Bi-2223 Grains in Composite Bi-2223/Ag and the Power Low -- 3.5. Summary -- 4. CHARACTERIZATION OF COMPOSITES IN TERMS OF PERCOLATION -- 4.1. Effect of Conductivity Ratio on the Power Law -- 4.2. Clustering Processes of Superconducting Bi-2223 Phase -- 4.3. Textural Asymmetry Affecting the Percolation Threshold -- 4.4. Summary -- 5. MICROSCOPIC PERCOLATION PROCESS IN MIXED-CRYSTALLINE COMPOUND R1-xPrxBa2Cu3O7-δ (R: RARE EARTH) -- 5.1. Two-Dimensionality of the Superconducting Paths in Nanocomposite R1-xPrxBa2Cu3O7-δ -- 5.2. Model of Nonclassical Percolation with the Aid of Orbital Hybridization in the Nanostructure of RPr-123 -- 5.3. Effect of Ionic Size on the Superconductor-Insulator Transition in RPr-123 -- 5.4. Summary -- 6. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 DIELECTRIC AND ULTRASONIC SPECTROSCOPY OF QUASI TWO-DIMENSIONAL CUINP2(SXSE1-X)6 MIXED CRYSTALS -- ABSTRACT -- 1. DIELECTRIC INVESTIGATION OF PHASE TRANSITIONS IN PURE CUINP2S6 AND CUINP2SE6 CRYSTALS -- 1.1. Phase Transitions in CuInP2S6 and CuInP2Se6 Crystals -- 1.2. Dielectric Studies of CuInP2S6 and CuInP2Se6 Crystals -- 1.2. Investigation of Ionic Conductivity in Mixed CuInP2(SxSe1-x)6 Crystals -- 1.2.1. Introduction -- 1.2.2. Ionic Conductivity of Mixed CuInP2(SxSe1-x)6 Crystals -- 1.3. Dynamics of Phase Transitions in Mixed CuInP2(SxSe1-x)6 Crystals -- 1.3.1. Influence of Small Amount of Sulphur to Dielectric Dispersion in CuInP2Se6 Crystals.

1.3.2. Crossover between Ferroelectric Order and Dipolar Glass Disorder -- 1.3.3. Dielectric Dispersion in Disordered Materials -- 1.3.4. Various Predefined Dielectric Relaxation Functions -- 1.3.5. Tichonov Regularization Method -- 1.3.6. Distribution of the Relaxtion Times -- 1.3.7. Dipolar Glass Disorder in Mixed CuInP2(SxSe1-x)6 Crystals with x=0.4-0.8 -- 1.3.8. Influence of Small Amount of Selenium to Dielectric Dispersion in CuInP2S6 Crystals -- 2. ULTRASONIC SPECTROSCOPY OF PHASE TRANSITIONS IN CUINP2(SXSE1-X)6 MIXED CRYSTALS -- 2.1. Introduction to Ultrasonic Behavior at the Ferroelectric Phase Transition -- 2.2. Ultrasonic Studies of CuInP2S6 and CuInP2Se6 and Mixed CuInP2(SxSe1-x)6 Crystals -- 2.3. Nonlinear Elastic Properties of Layered CuInP2S6 Crystals -- 2.3. Ultrasonic Method for Investigation of Piezoelectric and Ferroelectric Properties of CuInP2S6, CuInP2Se6 and Mixed CuInP2(SxSe1-x)6 Crystals -- CONCLUSION -- REFERENCES -- Chapter 5 UNRAVELLING XDT: STUDIES OF SOME RARE, BUT VIOLENT, EXPLOSIONS WITH STATISTICAL CRACK MECHANICS -- ABSTRACT -- INTRODUCTION -- XDT-THE ANOMALOUS EXPLOSIONS OF JENNINGS, BLOMMER AND BROWN -- STATISTICAL CRACK MECHANICS (SCRAM) -- Large Deformations -- Statistics -- Crack Stability and Speed -- A THEORETICAL APPROACH TO XDT AND HMX SENSITIVITY -- Burn -- CONCLUSION -- APPENDIX -- Comparison of Tensile and Compressive Strength -- REFERENCES -- Chapter 6 MAGNETIC PROPERTIES OF LAYERED TITANIUM DICHALCOGENIDES INTERCALATED WITH 3D- AND 4F-METALS -- ABSTRACT -- 1. INTRODUCTION -- 2. SAMPLE PREPARATION AND PECULIARITIES OF THE CRYSTAL STRUCTURE -- 3. INFLUENCE OF THE 3D METAL INTERCALATION ON MAGNETIC PROPERTIES OF TIX2 COMPOUNDS -- 3.1. VxTiX2 -- 3.2. CrxTiX2 -- 3.3. MnxTiX2 -- 3.4. FexTiX2 -- 3.5. CoxTiX2 -- 3.6. NixTiX2.

3.7. The Formation of Magnetic Moments and Magnetic Ordering in MxTiSe2 Depending on the Type of M Ions Intercalated -- 4. MAGNETIC PROPERTIES OF TITANIUM DICHALCOGENIDES INTERCALATED WITH RARE EARTHS -- 5. CONCLUDING REMARKS -- REFERENCES -- Chapter 7 ENERGETIC MATERIALS: CRYSTALLIZATION AND CHARACTERIZATION -- ABSTRACT -- INTRODUCTION -- CRYSTALLIZATION OF ENERGETIC MATERIALS -- CHARACTERIZATION OF ENERGETIC MATERIALS / COMPOSITIONS -- OUTLOOK -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 ELECTRODEPOSITION AND CORROSION PROPERTIES OF ZN-CO AND ZN-CO-FE ALLOY COATINGS -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 2.1. Base Material and Surface Preparation -- 2.2. Electrolyte composition for Zn-Co electrodeposition studies -- 2.3. Electrodeposition Parameter Settings for Electrochemical Studies -- 2.4. Zn-Co Electrodeposition Studies by Cathodic Polarization Measurements -- 2.5. Electrochemical Studies of Sacrificial Properties of Zn-Co and Zn-Co-Fe Coatings -- 2.6. Electrochemical Studies of Barrier Properties of Zn-Co and Zn-Co-Fe Coatings -- 2.6.1. Potentiodynamic Polarization Measurements -- 2.6.2. Linear Polarization Measurements -- 2.7. Salt Spray Testing -- 3. RESULTS AND DISCUSSION -- 3.1. Zn-Co Electrodeposition Studies by Cathodic Polarization Measurements -- 3.2. Electrochemical Studies of Sacrificial Properties of Zn-Co and Zn-Co-Fe Coatings -- 3.3. Electrochemical Studies of Barrier Properties of Zn-Co and Zn-Co-Fe Coatings -- 3.3.1. Potentiodynamic Polarization Measurement -- 3.3.2. Linear Polarization Measurements -- 3.4. Salt Spray Testing -- 3.5. X-ray Diffraction of Zn-Co-Fe Coatings -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 QUASI ONE-DIMENSIONAL CDSE NANOWIRES: GROWTH, STRUCTURE, AND POLARIZED PHOTOLUMINESCENCE -- I. THE PREPARATION OF METASTABLE 1D CDSE NANOSTRUCTURES.

II. CONTROLLED GROWTH OF CDSE NANOIWRES.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.