ORPP logo
Image from Google Jackets

Landslides : Causes, Types and Effects.

By: Contributor(s): Material type: TextTextSeries: Natural Disaster Research, Prediction and MitigationPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2009Copyright date: ©2010Edition: 1st edDescription: 1 online resource (418 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781614701866
Subject(s): Genre/Form: Additional physical formats: Print version:: Landslides: Causes, Types and EffectsDDC classification:
  • 551.3/07
LOC classification:
  • QE599.A2 -- L36 2010eb
Online resources:
Contents:
Intro -- LANDSLIDES: CAUSES, TYPESAND EFFECTS -- CONTENTS -- PREFACE -- MASS MOVEMENTS IN ADRIATIC CENTRAL ITALY:ACTIVATION AND EVOLUTIVE CONTROL FACTORS -- Abstract -- 1. Introduction -- 2. Regional Setting -- 2.1. Geology, Neotectonic and Seismicity -- 2.2. Geomorphological Evolution and Climatic Conditions -- 2.3. Geo-Mechanical and Hydrogeological Background -- 3. Landsliding Susceptivity in the Study Area, in the ItalianEnvironmental Context -- 4. Gravitational Phenomena in the Central Apennine -- 4.1. Mass Movements of the Tectonic Slopes -- 4.1.1. The Study Cases -- 4.1.1.1. Mass Movements along the Bordering Slope of the Tectonic Basins -- 4.1.1.2. Mass Movements along the Thrust Fronts -- 4.2. Mass Movements on the Valley Slopes -- 4.2.1. The Study Cases -- 4.2.1.1. Mass Movements of the Glacial Slopes -- 4.2.2.2. Mass Movements along the Fluvial-Denudation Slopes -- 5. The Gravitational Phenomena of the Peri-Adriatic Belt -- 5.1. Mass Movements in the Top Sectors of the Reliefs -- 5.1.1. The Study Cases -- The Case of Monte Falcone -- The Case of Montegiorgi -- 5.2. Mass Movements of the Clayey Slopes -- 5.3. Mass Movements of the Coast -- 6. Evolution of Rural Landscape and Landsliding -- Phase 1 -- Phase 2. The "Alberata" Landscape -- Phase 3 -- 7. Conclusion -- References -- CAUSES AND EFFECTS OF LANDSLIDESIN THE MONTERREY METROPOLITAN AREA,NE MEXICO -- Abstract -- 1. Introduction -- 2. Ubication and Demographic Growth -- 3. Geological Setting -- 3.1. Morphological Features and Geological Setting -- 3.2. Lithology -- 3.3. Structural Geology -- 4. Hydrometeorological Conditions -- 4.1. Climatic Conditions -- 4.2. Extraordinary Rainfall Events -- 5. Landslides Types in the MMA -- 5.1. Ancient Landslides Related to Geological Causes -- 5.1.1. Landslide in Las Mitras Anticline -- 5.1.2. Block Fall in the Chipinque Area.
5.2. Recent Landslides Related to Human Causes -- 5.2.1. Landslides in Quarries Areas -- Salvador Allende Landslide -- Mitras Landslide -- 5.2.2. Landslides in Slope Areas -- Las Lajas Landslide -- 6. Discussion -- 6.1. Rainfall Intensity - Duration Landslide Control -- 6.2. Landslides and Intense Rainfall Events Correlation -- 7. Additional Landslide Causes -- 8. Conclusions -- Acknowledgements -- References -- MITIGATION OF LARGE LANDSLIDES AND DEBRISFLOWS IN SLOVENIA, EUROPE -- Abstract -- I. Introduction -- II. Natural Conditions in Slovenia -- A. Precipitation and Run-Off -- B. Hydrogeology and Relief -- C. Flooded Areas -- III. Land Sliding and Erosion Processes in Slovenia -- IV. Large Landslides in Slovenia -- A. Stože Landslide -- B. Strug Landslide -- C. Macesnik Landslide -- D. Slano Blato Landslide -- V. General on Mitigation of Large Landslides in Slovenia -- VI. Mitigation of the Macesnik Landslides -- VII. Mitigation of the Slano Blato Landslide -- VIII. Conclusions -- Acknowledgements -- References -- GEOMATIC METHODS FOR PUNCTUAL AND AREALCONTROL OF SURFACE CHANGES DUETO LANDSLIDE PHENOMENA -- Abstract -- 1. Introduction -- 2. Point - Based Measurements -- 2.1. Differential Leveling -- 2.1.1. Spirit and Trigonometric Levelling Basic Concepts -- 2.1.2. Instruments and Elaborates -- 2.2. Two- and Three-Dimensional Positioning Techniques -- 2.2.1. Basic Concepts about Topographic Surveys by Means of GNSS and TotalStations -- 2.2.2. Instruments and Elaborates of GNSS -- 2.2.3. Instruments and Elaborates of Total Stations -- 2.2.4. Monumentation -- 3. Non-contact Methods -- 3.1. Airborne LiDAR and Terrestrial Laser Scanner -- 3.1.1. Basic Concepts -- 3.1.2. Instruments and Elaborates -- 3.1.3. Accuracy of Point Clouds -- 3.2. Optical Sensors -- 3.2.1. Satellite Imagery -- 3.2.2. Photogrammetry -- 3.2.2.1. Basic Concepts.
3.2.2.2. Instruments and Elaborates -- 3.2.2.3. Ground Fixed Single Digital Camera -- 3.2.2.4. About the Archival Photogrammetry -- 3.2.2.5. Accuracy of Stereoscopic Data Capture -- 3.3. Radar Sensors -- 3.3.1. Satellite/Airborne Dinsar: Basic Concepts -- 3.3.2. Terrestrial Radar Interferometry -- 4. Selection of the Monitoring System -- 5. Discussion -- 6. Final Remarks -- Acknowledgement -- References -- USING LARGEST SEISMICALLY INDUCEDLANDSLIDES FOR ESTIMATING EARTHQUAKEMAGNITUDES AND TOPOGRAPHY CHANGES -- Abstract -- Introduction -- The Method of the Paleoseismogeology and Evolution ofPaleoseismological Investigations -- Study Area and Historic Background -- Estimating Earthquake Magnitudes and Topography Changes onthe Basis of Landslide Study -- Estimating Magnitudes of Prehistoric Earthquakes from Landslide Data -- Estimating Topography Changes from Landslide Data -- Difficulties and Limitations of Suggested Approach -- Conclusion -- References -- RECOGNITION OF LIKELY LARGE-SCALE LANDSLIPFAILURE SURFACES THROUGH GEOTECHNICALCORE LOGGING METHODS -- Abstract -- 1. Introduction -- 2. Geotechnical Rock Core Logging -- 2.1. Qualitative Rock Mass Descriptions -- 2.2. Quantitative Rock Mass Strength Characterization -- 3. Further Characterization and Implications -- 4. Conclusion -- Acknowledgements -- References -- MULTI-SCALE ANALYSIS FOR ESTIMATINGSTRONG GROUND MOTION AND STRUCTURERESPONSES -- Abstract -- 1. Introduction -- 2. Formulation of Multi-Scale Analysis -- 3. Numerical Experiments -- 4. Conclusion -- Acknowledgement -- References -- PREDICTION OF THE SEISMIC DISPLACEMENTOF LANDSLIDESUSING A MULTI-BLOCK MODEL -- Abstract -- 1. Introduction -- 2. The Multi-block Model -- 3. Extension of the Multi-block Model to Predict the Response ofLandslides -- Sliding System Model for Large Displacement.
Constitutive Model Predicting the Response along Slip Surfaces due to PorePressure Build-Up -- Soil Response -- Proposed Model -- Discussion of the Model and Its Parameters -- Calibration of the Model Parameters, Comparison between Measurements andPredictions and Discussion -- Implementation -- Steps Needed to Apply the Model -- 4. Validation of the Multi-block Model for the Prediction of theTrigerring and Deformation of Landslides -- The Nikawa Slide -- Establishment of the Soil Strength and Density -- Prediction of the Location of the Slip Surface -- Multi-block Predictions -- 5. Conclusions -- Acknowledgements -- References -- FAULTS ACTIVITY, LANDSLIDES AND FLUVIALCATCHMENTS TRIGGERED BY THE 28 DECEMBER1908 MESSINA STRAIT EARTHQUAKE (ITALY) -- Abstract -- 1. Introduction -- 2. The 28 December 1908 Messina Strait Earthquake:Source Parameters -- 3. Evidence of Tectonic Controls on Drainage Basins -- 4. Modifications of Landscape Induced by the 1908 Fault Rupture -- Conclusion -- Acknowledgment -- References -- SPECIAL PROBLEMS IN LANDSLIDE MODELLING:MATHEMATICAL AND COMPUTATIONALMETHODS -- 1. The Role of Mathematical Methods in Simulations of LandslideMovements -- 1.1. General Motivation -- 1.2. Formulation of Model Problems Based on the Multibody Contact Theory -- 1.2.1. Models Based on the Multibody Contact Theory in Thermo-visco-elasticity -- Boundary and contact conditions: -- (A) Multibody contact problems in (thermo-visco-)elastic rheology with short memory: -- (B) Multibody contact problems in thermo-visco-elastic rheology with long memory: -- 1.2.2. Models Based on the Multibody Contact Theory in Thermo-visco-plasticity -- Rheology and the constitutive relations: -- Boundary and contact conditions: -- 1.2.3. Preliminaries and Notations -- 2. The Model Based on the Contact Problem with GivenFriction in Thermo-Elasticity: Static Case.
2.1. Introduction -- 2.2. Models Based on the Contact Problem with Given Friction (The so-calledTresca Model) in Thermo-elasticity -- 2.2.1. Formulation of the Problem -- 2.2.2. Variational (Weak) Solution of the Problem -- 2.2.3. Finite Element Solution of the Problem -- 2.2.4. Algorithm -- 3. The Models Based on the Dynamic and Quasi-Static ContactProblems with Coulombian Friction in Visco-Elasticity withShort and Long Memories Formulated in Velocities and Displacements -- 3.1. Introduction -- 3.2. Models Based on the Dynamic Contact Problems Formulated in Velocities -- 3.2.1. Formulation of the Problem -- 3.2.2. Weak Solution of the Problem -- Variational formulation of the problem and the penalty approximation -- Existence results -- A priori estimates: -- 3.3. Models Based on Quasi-static and Dynamic Contact Problems Formulatedin Displacements -- 3.3.1. Introduction -- 3.3.2. Formulation of the Dynamic Model Problems -- 3.3.3. The Quasi-static Multibody Contact Problems -- 3.3.4. The Approximate Multibody Dynamic Contact Problems -- 3.4. Numerical Solutions of Dynamic Model Problems Formulated in Displacements -- 3.5. Algorithms -- 3.5.1. Semi-implicit Scheme -- 3.5.2. Approximate Mixed Variational Formulation of the Tresca Model: The SaddlePoint-Uzawa/CGM Approach - the Matching Case -- 3.5.3. The Mortar Approach - the Non-matching Case -- Mixed variational formulation - elastic case -- Mixed variational formulation - visco-elastic case -- 3.5.4. Matrix Formulation and the Primal-dual Active Set Strategy Method (PDAS):The Frictionless Case in (Visco-)elasticity with Short Memory -- Algorithm PDAS: -- 3.5.5. The Newmark Method -- Algorithm D-PDAS: -- 3.6. Model Problems in Thermo-visco-elasticity with Long Memory -- 3.7. Introduction.
3.7.1. Formulation of the Model Problem in the Thermo-visco-elastic rheology withLong Memory and Its Weak Solution.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- LANDSLIDES: CAUSES, TYPESAND EFFECTS -- CONTENTS -- PREFACE -- MASS MOVEMENTS IN ADRIATIC CENTRAL ITALY:ACTIVATION AND EVOLUTIVE CONTROL FACTORS -- Abstract -- 1. Introduction -- 2. Regional Setting -- 2.1. Geology, Neotectonic and Seismicity -- 2.2. Geomorphological Evolution and Climatic Conditions -- 2.3. Geo-Mechanical and Hydrogeological Background -- 3. Landsliding Susceptivity in the Study Area, in the ItalianEnvironmental Context -- 4. Gravitational Phenomena in the Central Apennine -- 4.1. Mass Movements of the Tectonic Slopes -- 4.1.1. The Study Cases -- 4.1.1.1. Mass Movements along the Bordering Slope of the Tectonic Basins -- 4.1.1.2. Mass Movements along the Thrust Fronts -- 4.2. Mass Movements on the Valley Slopes -- 4.2.1. The Study Cases -- 4.2.1.1. Mass Movements of the Glacial Slopes -- 4.2.2.2. Mass Movements along the Fluvial-Denudation Slopes -- 5. The Gravitational Phenomena of the Peri-Adriatic Belt -- 5.1. Mass Movements in the Top Sectors of the Reliefs -- 5.1.1. The Study Cases -- The Case of Monte Falcone -- The Case of Montegiorgi -- 5.2. Mass Movements of the Clayey Slopes -- 5.3. Mass Movements of the Coast -- 6. Evolution of Rural Landscape and Landsliding -- Phase 1 -- Phase 2. The "Alberata" Landscape -- Phase 3 -- 7. Conclusion -- References -- CAUSES AND EFFECTS OF LANDSLIDESIN THE MONTERREY METROPOLITAN AREA,NE MEXICO -- Abstract -- 1. Introduction -- 2. Ubication and Demographic Growth -- 3. Geological Setting -- 3.1. Morphological Features and Geological Setting -- 3.2. Lithology -- 3.3. Structural Geology -- 4. Hydrometeorological Conditions -- 4.1. Climatic Conditions -- 4.2. Extraordinary Rainfall Events -- 5. Landslides Types in the MMA -- 5.1. Ancient Landslides Related to Geological Causes -- 5.1.1. Landslide in Las Mitras Anticline -- 5.1.2. Block Fall in the Chipinque Area.

5.2. Recent Landslides Related to Human Causes -- 5.2.1. Landslides in Quarries Areas -- Salvador Allende Landslide -- Mitras Landslide -- 5.2.2. Landslides in Slope Areas -- Las Lajas Landslide -- 6. Discussion -- 6.1. Rainfall Intensity - Duration Landslide Control -- 6.2. Landslides and Intense Rainfall Events Correlation -- 7. Additional Landslide Causes -- 8. Conclusions -- Acknowledgements -- References -- MITIGATION OF LARGE LANDSLIDES AND DEBRISFLOWS IN SLOVENIA, EUROPE -- Abstract -- I. Introduction -- II. Natural Conditions in Slovenia -- A. Precipitation and Run-Off -- B. Hydrogeology and Relief -- C. Flooded Areas -- III. Land Sliding and Erosion Processes in Slovenia -- IV. Large Landslides in Slovenia -- A. Stože Landslide -- B. Strug Landslide -- C. Macesnik Landslide -- D. Slano Blato Landslide -- V. General on Mitigation of Large Landslides in Slovenia -- VI. Mitigation of the Macesnik Landslides -- VII. Mitigation of the Slano Blato Landslide -- VIII. Conclusions -- Acknowledgements -- References -- GEOMATIC METHODS FOR PUNCTUAL AND AREALCONTROL OF SURFACE CHANGES DUETO LANDSLIDE PHENOMENA -- Abstract -- 1. Introduction -- 2. Point - Based Measurements -- 2.1. Differential Leveling -- 2.1.1. Spirit and Trigonometric Levelling Basic Concepts -- 2.1.2. Instruments and Elaborates -- 2.2. Two- and Three-Dimensional Positioning Techniques -- 2.2.1. Basic Concepts about Topographic Surveys by Means of GNSS and TotalStations -- 2.2.2. Instruments and Elaborates of GNSS -- 2.2.3. Instruments and Elaborates of Total Stations -- 2.2.4. Monumentation -- 3. Non-contact Methods -- 3.1. Airborne LiDAR and Terrestrial Laser Scanner -- 3.1.1. Basic Concepts -- 3.1.2. Instruments and Elaborates -- 3.1.3. Accuracy of Point Clouds -- 3.2. Optical Sensors -- 3.2.1. Satellite Imagery -- 3.2.2. Photogrammetry -- 3.2.2.1. Basic Concepts.

3.2.2.2. Instruments and Elaborates -- 3.2.2.3. Ground Fixed Single Digital Camera -- 3.2.2.4. About the Archival Photogrammetry -- 3.2.2.5. Accuracy of Stereoscopic Data Capture -- 3.3. Radar Sensors -- 3.3.1. Satellite/Airborne Dinsar: Basic Concepts -- 3.3.2. Terrestrial Radar Interferometry -- 4. Selection of the Monitoring System -- 5. Discussion -- 6. Final Remarks -- Acknowledgement -- References -- USING LARGEST SEISMICALLY INDUCEDLANDSLIDES FOR ESTIMATING EARTHQUAKEMAGNITUDES AND TOPOGRAPHY CHANGES -- Abstract -- Introduction -- The Method of the Paleoseismogeology and Evolution ofPaleoseismological Investigations -- Study Area and Historic Background -- Estimating Earthquake Magnitudes and Topography Changes onthe Basis of Landslide Study -- Estimating Magnitudes of Prehistoric Earthquakes from Landslide Data -- Estimating Topography Changes from Landslide Data -- Difficulties and Limitations of Suggested Approach -- Conclusion -- References -- RECOGNITION OF LIKELY LARGE-SCALE LANDSLIPFAILURE SURFACES THROUGH GEOTECHNICALCORE LOGGING METHODS -- Abstract -- 1. Introduction -- 2. Geotechnical Rock Core Logging -- 2.1. Qualitative Rock Mass Descriptions -- 2.2. Quantitative Rock Mass Strength Characterization -- 3. Further Characterization and Implications -- 4. Conclusion -- Acknowledgements -- References -- MULTI-SCALE ANALYSIS FOR ESTIMATINGSTRONG GROUND MOTION AND STRUCTURERESPONSES -- Abstract -- 1. Introduction -- 2. Formulation of Multi-Scale Analysis -- 3. Numerical Experiments -- 4. Conclusion -- Acknowledgement -- References -- PREDICTION OF THE SEISMIC DISPLACEMENTOF LANDSLIDESUSING A MULTI-BLOCK MODEL -- Abstract -- 1. Introduction -- 2. The Multi-block Model -- 3. Extension of the Multi-block Model to Predict the Response ofLandslides -- Sliding System Model for Large Displacement.

Constitutive Model Predicting the Response along Slip Surfaces due to PorePressure Build-Up -- Soil Response -- Proposed Model -- Discussion of the Model and Its Parameters -- Calibration of the Model Parameters, Comparison between Measurements andPredictions and Discussion -- Implementation -- Steps Needed to Apply the Model -- 4. Validation of the Multi-block Model for the Prediction of theTrigerring and Deformation of Landslides -- The Nikawa Slide -- Establishment of the Soil Strength and Density -- Prediction of the Location of the Slip Surface -- Multi-block Predictions -- 5. Conclusions -- Acknowledgements -- References -- FAULTS ACTIVITY, LANDSLIDES AND FLUVIALCATCHMENTS TRIGGERED BY THE 28 DECEMBER1908 MESSINA STRAIT EARTHQUAKE (ITALY) -- Abstract -- 1. Introduction -- 2. The 28 December 1908 Messina Strait Earthquake:Source Parameters -- 3. Evidence of Tectonic Controls on Drainage Basins -- 4. Modifications of Landscape Induced by the 1908 Fault Rupture -- Conclusion -- Acknowledgment -- References -- SPECIAL PROBLEMS IN LANDSLIDE MODELLING:MATHEMATICAL AND COMPUTATIONALMETHODS -- 1. The Role of Mathematical Methods in Simulations of LandslideMovements -- 1.1. General Motivation -- 1.2. Formulation of Model Problems Based on the Multibody Contact Theory -- 1.2.1. Models Based on the Multibody Contact Theory in Thermo-visco-elasticity -- Boundary and contact conditions: -- (A) Multibody contact problems in (thermo-visco-)elastic rheology with short memory: -- (B) Multibody contact problems in thermo-visco-elastic rheology with long memory: -- 1.2.2. Models Based on the Multibody Contact Theory in Thermo-visco-plasticity -- Rheology and the constitutive relations: -- Boundary and contact conditions: -- 1.2.3. Preliminaries and Notations -- 2. The Model Based on the Contact Problem with GivenFriction in Thermo-Elasticity: Static Case.

2.1. Introduction -- 2.2. Models Based on the Contact Problem with Given Friction (The so-calledTresca Model) in Thermo-elasticity -- 2.2.1. Formulation of the Problem -- 2.2.2. Variational (Weak) Solution of the Problem -- 2.2.3. Finite Element Solution of the Problem -- 2.2.4. Algorithm -- 3. The Models Based on the Dynamic and Quasi-Static ContactProblems with Coulombian Friction in Visco-Elasticity withShort and Long Memories Formulated in Velocities and Displacements -- 3.1. Introduction -- 3.2. Models Based on the Dynamic Contact Problems Formulated in Velocities -- 3.2.1. Formulation of the Problem -- 3.2.2. Weak Solution of the Problem -- Variational formulation of the problem and the penalty approximation -- Existence results -- A priori estimates: -- 3.3. Models Based on Quasi-static and Dynamic Contact Problems Formulatedin Displacements -- 3.3.1. Introduction -- 3.3.2. Formulation of the Dynamic Model Problems -- 3.3.3. The Quasi-static Multibody Contact Problems -- 3.3.4. The Approximate Multibody Dynamic Contact Problems -- 3.4. Numerical Solutions of Dynamic Model Problems Formulated in Displacements -- 3.5. Algorithms -- 3.5.1. Semi-implicit Scheme -- 3.5.2. Approximate Mixed Variational Formulation of the Tresca Model: The SaddlePoint-Uzawa/CGM Approach - the Matching Case -- 3.5.3. The Mortar Approach - the Non-matching Case -- Mixed variational formulation - elastic case -- Mixed variational formulation - visco-elastic case -- 3.5.4. Matrix Formulation and the Primal-dual Active Set Strategy Method (PDAS):The Frictionless Case in (Visco-)elasticity with Short Memory -- Algorithm PDAS: -- 3.5.5. The Newmark Method -- Algorithm D-PDAS: -- 3.6. Model Problems in Thermo-visco-elasticity with Long Memory -- 3.7. Introduction.

3.7.1. Formulation of the Model Problem in the Thermo-visco-elastic rheology withLong Memory and Its Weak Solution.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.