ORPP logo
Image from Google Jackets

Composite Structures : Effects of Defects.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2019Edition: 1st edDescription: 1 online resource (237 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118997734
Subject(s): Genre/Form: Additional physical formats: Print version:: Composite StructuresDDC classification:
  • 624.18
LOC classification:
  • TA664 .E443 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Characteristics of Composites -- 1.1 Introduction to Behavior -- 1.2 Introduction to Composite Analysis -- 1.3 Failure and Strength Methodologies -- 1.3.1 Lamina Failure Modes and their Influence upon Catastrophic Failure of Multidirectional Laminates -- 1.3.2 Design Values and Environmental Sensitivity -- 1.3.3 Design Values for Unnotched Multidirectional Laminates -- 1.3.4 Design Values for Notched Multidirectional Laminates -- 1.3.5 Material Variability -- 1.3.6 Strain‐Based Failure Methodology -- 1.3.7 Composite Fatigue Behavior -- References -- Chapter 2 Design Methodology and Regulatory Requirements -- 2.1 Regulatory Requirements -- 2.2 Material and Process Specifications -- 2.3 Design Methodology -- 2.4 Design Values for Notched Multidirectional Laminates -- 2.5 Design Values for Bolted Joints -- 2.5.1 Determination of Fastener Loading -- 2.5.2 Failure Analysis at a Loaded and Unloaded Hole -- 2.6 Design Values for Bonded Joints and Bondlines -- 2.7 Design Values for Sandwich Structure -- 2.7.1 Facesheet Tension Design Values -- 2.7.2 Facesheet Compression Design Values -- 2.7.3 Sandwich Flexural Design Values -- 2.7.4 Out‐of‐Plane Loading -- 2.8 Statistical Allowables -- 2.9 Simulation of Temperature and Moisture Content -- References -- Chapter 3 Material, Manufacturing, and Service Defects -- 3.1 Introduction -- 3.1.1 Differentiating Cosmetic from Structural Defects -- 3.2 Defects by Stage of Occurrence -- 3.2.1 Material Precure Defects -- 3.2.1.1 Fiber Damage and Defects -- 3.2.2 Manufacturing Defects -- 3.2.3 Service Defects -- 3.3 Defects by Location: Matrix‐Dominated Defects -- 3.3.1 Matrix Degradation Due to Porosity and Voids -- 3.3.2 Matrix Degradation Due to Aged Material -- 3.3.3 Matrix Degradation Due to Errors in Curing (Pressure and Temperature).
3.3.4 Matrix Damage with No Fiber Breakage from Impact -- 3.3.5 Matrix Cracking and Crazing -- 3.3.6 Matrix Degradation Due to Anomalous Moisture Absorption -- 3.3.7 Matrix Degradation Due to UV Radiation or Surface Contamination -- 3.3.8 Matrix Degradation Due to High Temperature Exposure -- 3.3.9 Blisters -- 3.3.10 Matrix Degradation Due to Resin Mixture Error -- 3.4 Defects by Location: Fiber‐Dominated Process Defects -- 3.4.1 Fiber Misalignment or Wrinkles -- 3.4.1.1 In‐Plane Waviness -- 3.4.1.2 Out‐of‐Plane Waviness -- 3.4.2 Excessive Ply Drops and Gaps -- 3.4.3 Fiber Damage -- 3.5 Defects by Location: Sandwich Composite Defects -- 3.5.1 Core Defect: Over‐Expanded or Blown Core -- 3.5.2 Core Defect: Core Crushing or Movement -- 3.5.3 Core Defect: Core‐Splice Spacing Exceeding Limits -- 3.5.4 Core Defect: Incorrect or Variable Core Thickness -- 3.5.5 Core Defect: Core Degradation Due to Core Defect - Water Entrapment in Core -- 3.5.6 Core Defect: Incorrect Core Density -- 3.5.7 Core Defect: Misaligned Nodes or Unbonded Nodes in Core Cell -- 3.5.8 Core Defect: Mismatched Nodes or Corrugations -- 3.5.9 Core Defect: Corrosion -- 3.5.10 Facesheet Defect: Pillowing, Wrinkling, or Orange Peel -- 3.5.11 Facesheet Defect: Dents in Facesheet -- 3.5.12 Facesheet/Core Disbond -- 3.5.13 Defects in Adhesive Fillets -- 3.5.14 Edge‐Closeout Defects -- 3.6 Defects by Location: Mixed‐Mode Fiber and Matrix Defects -- 3.6.1 Impact Damage with Fiber Breakage -- 3.6.2 Bearing Damage -- 3.6.3 Edge Cracking and Crushing -- 3.6.4 Cuts, Scratches, and Gouges -- 3.6.5 Composite Damage from Lightning Strikes -- 3.6.6 Misdrilled Holes -- 3.6.7 Mismatched Parts -- 3.6.8 Incorrect Fiber Orientation or Missing Plies -- 3.6.9 Galvanic Corrosion -- 3.6.10 Resin Migration and Uneven Fiber Volume Fraction -- 3.6.11 Residual Stresses and Dimensional Conformance.
3.6.12 Delaminations -- 3.6.13 Composite Degradation Due to Excessive Temperature and Chemical Exposure -- 3.6.13.1 Fibers -- 3.6.13.2 Matrix -- 3.7 Defects by Location: Fastened and Bonded Joint Defects -- 3.7.1 Fastened Joints -- 3.7.1.1 Bearing Damage -- 3.7.1.2 Hole Delamination/Fraying -- 3.7.1.3 Hole Elongation or Out‐of‐Round Holes -- 3.7.1.4 Fastener Seating -- 3.7.1.5 Fastener Over‐Torque -- 3.7.1.6 Fastener Under‐Torque -- 3.7.1.7 Missing Fastener -- 3.7.1.8 Porosity Near the Fastener -- 3.7.1.9 Resin‐Starved Bearing Surface -- 3.7.1.10 Insufficient Edge Margins -- 3.7.1.11 Tilted Hole -- 3.7.2 Bonded Joints -- 3.7.2.1 Poor Cure Due to Improper Material Chemistry: Mixing of Two‐Part Resins or Material Past Shelf‐ or Out Life -- 3.7.2.2 Incorrect Bondline Thickness, Scarf, or Overlap Length -- 3.7.2.3 Zero‐Volume Disbond or Long‐Term Bond Failure Due to Contamination or Incorrect Surface Preparation -- 3.7.2.4 Bondline Degradation Due to Moisture or Incorrect Pressure During Processing -- 3.7.2.5 Bondline Degradation Due to Incorrect Heating Procedures -- 3.8 Future Directions -- References -- Chapter 4 Inspection Methods -- 4.1 Introduction -- 4.2 Mechanical Vibration NDT Methods -- 4.2.1 Low Frequency Methods -- 4.2.1.1 Tap Testing -- 4.2.1.2 Mechanical Impedance -- 4.2.1.3 Membrane Resonance -- 4.2.2 High Frequency Ultrasonic Methods -- 4.2.2.1 Pulse Echo and Thru‐Transmission -- 4.2.2.2 Pulse Echo Ultrasonics -- 4.2.2.3 Through‐Transmission Ultrasonics -- 4.2.2.4 Phased Array Ultrasonics -- 4.2.2.5 Ultrasonic Spectroscopy for Zero‐Volume Disbonds -- 4.2.2.6 Ultrasonic Methods for Fiber Distortion -- 4.2.2.7 Guided Lamb Waves -- 4.2.2.8 Air‐Coupled Ultrasonics -- 4.2.3 Acoustic Emission -- 4.3 Visual and Enhanced Visual Methods -- 4.3.1 Visual Inspections -- 4.3.2 Verification or Pressure Film -- 4.3.3 Leak Testing.
4.4 Electromagnetic Radiation (X‐Ray, Gamma, and Neutron) -- 4.4.1 Radiography -- 4.4.2 Computed Tomography -- 4.4.3 Compton Scattering -- 4.4.4 Neutron Tomography -- 4.5 Optical Methods -- 4.5.1 Shearography -- 4.5.2 Digital Image Correlation (DIC) -- 4.5.3 Hyperspectral Near Infrared Method for Resin Migration and Fiber Distortion -- 4.5.4 Laser Profilometers and Image Processing -- 4.6 Strain Measurement -- 4.7 Thermography -- 4.7.1 Active Thermography -- 4.7.1.1 Thermoelastic Stress Analysis -- 4.7.2 Passive Thermography -- 4.8 Destructive Methods -- 4.8.1 Physical Tests -- 4.8.2 Density and Porosity Measurements -- 4.8.3 Microscopy -- 4.9 NDT Standards -- References -- Chapter 5 Effects of Defects - Design Values and Statistical Considerations -- 5.1 Introduction -- 5.2 Effects on Laminate Properties -- 5.2.1 Cure Cycle Anomalies -- 5.2.1.1 Porosity -- 5.2.1.2 Nonuniformly Distributed Voids (Stratified Porosity) -- 5.2.1.3 Stratified Porosity or Delamination in L‐Shaped Details -- 5.2.1.4 In‐Plane Fiber Misalignment -- 5.2.1.5 Fiber Waviness (Out‐of‐Plane) -- 5.2.1.6 Waviness in Curved Parts -- 5.2.1.7 Ply Gaps and Overlaps -- 5.2.2 Cuts, Scratches, and Gouges -- 5.2.3 Edge Delaminations -- 5.2.4 Foreign Object Impact -- 5.3 Effects on Sandwich Composites Properties -- 5.3.1 Facesheet to Core Disbonding -- 5.3.2 Facesheet Pillowing -- 5.3.3 Node Disbonds -- 5.3.4 Core Splicing -- 5.4 Effects on Bolted Joint Properties -- 5.4.1 Delaminations at the Holes -- 5.4.2 Oversize Holes -- 5.4.3 Over‐Torqued Fasteners -- 5.4.4 Porosity Near Fasteners -- 5.5 Effects on Bonded Joint Properties -- 5.5.1 Assessment of Defects in Design of Bonded Joints -- 5.6 Statistical Considerations -- 5.6.1 Mean versus Design Values -- 5.6.2 Simpson's Paradox -- 5.6.3 Design of Experiments -- 5.7 Suggested Approach for Evaluation of Defects.
5.8 Evaluation of Scaling and Multiple Defects -- References -- Chapter 6 Selected Case Studies in Effects of Defects -- 6.1 Introduction -- 6.2 Case Study 1: The Ohio Timber Road II Wind Turbine Failure Due to Wrinkles -- 6.2.1 Event -- 6.2.2 Background -- 6.2.3 Investigation -- 6.2.4 Lessons Learned -- 6.3 Case Study 2: Faulty Repairs of Sandwich Core Structure -- 6.3.1 Event -- 6.3.2 Lessons Learned -- 6.4 Case Study 3: Bonded Repair Failure -- 6.4.1 Event -- 6.4.2 Investigation -- 6.4.3 Lessons Learned -- 6.5 Case Study 4: Air Transat 961 Sandwich‐Composite Failure -- 6.5.1 Event -- 6.5.2 Investigation -- 6.5.3 Lessons Learned -- 6.6 Case Study 5: Debonding Failure of a Sandwich‐Composite Cryogenic Fuel Tank -- 6.6.1 Event -- 6.6.2 Investigation -- 6.6.3 Lessons Learned -- References -- Glossary -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Characteristics of Composites -- 1.1 Introduction to Behavior -- 1.2 Introduction to Composite Analysis -- 1.3 Failure and Strength Methodologies -- 1.3.1 Lamina Failure Modes and their Influence upon Catastrophic Failure of Multidirectional Laminates -- 1.3.2 Design Values and Environmental Sensitivity -- 1.3.3 Design Values for Unnotched Multidirectional Laminates -- 1.3.4 Design Values for Notched Multidirectional Laminates -- 1.3.5 Material Variability -- 1.3.6 Strain‐Based Failure Methodology -- 1.3.7 Composite Fatigue Behavior -- References -- Chapter 2 Design Methodology and Regulatory Requirements -- 2.1 Regulatory Requirements -- 2.2 Material and Process Specifications -- 2.3 Design Methodology -- 2.4 Design Values for Notched Multidirectional Laminates -- 2.5 Design Values for Bolted Joints -- 2.5.1 Determination of Fastener Loading -- 2.5.2 Failure Analysis at a Loaded and Unloaded Hole -- 2.6 Design Values for Bonded Joints and Bondlines -- 2.7 Design Values for Sandwich Structure -- 2.7.1 Facesheet Tension Design Values -- 2.7.2 Facesheet Compression Design Values -- 2.7.3 Sandwich Flexural Design Values -- 2.7.4 Out‐of‐Plane Loading -- 2.8 Statistical Allowables -- 2.9 Simulation of Temperature and Moisture Content -- References -- Chapter 3 Material, Manufacturing, and Service Defects -- 3.1 Introduction -- 3.1.1 Differentiating Cosmetic from Structural Defects -- 3.2 Defects by Stage of Occurrence -- 3.2.1 Material Precure Defects -- 3.2.1.1 Fiber Damage and Defects -- 3.2.2 Manufacturing Defects -- 3.2.3 Service Defects -- 3.3 Defects by Location: Matrix‐Dominated Defects -- 3.3.1 Matrix Degradation Due to Porosity and Voids -- 3.3.2 Matrix Degradation Due to Aged Material -- 3.3.3 Matrix Degradation Due to Errors in Curing (Pressure and Temperature).

3.3.4 Matrix Damage with No Fiber Breakage from Impact -- 3.3.5 Matrix Cracking and Crazing -- 3.3.6 Matrix Degradation Due to Anomalous Moisture Absorption -- 3.3.7 Matrix Degradation Due to UV Radiation or Surface Contamination -- 3.3.8 Matrix Degradation Due to High Temperature Exposure -- 3.3.9 Blisters -- 3.3.10 Matrix Degradation Due to Resin Mixture Error -- 3.4 Defects by Location: Fiber‐Dominated Process Defects -- 3.4.1 Fiber Misalignment or Wrinkles -- 3.4.1.1 In‐Plane Waviness -- 3.4.1.2 Out‐of‐Plane Waviness -- 3.4.2 Excessive Ply Drops and Gaps -- 3.4.3 Fiber Damage -- 3.5 Defects by Location: Sandwich Composite Defects -- 3.5.1 Core Defect: Over‐Expanded or Blown Core -- 3.5.2 Core Defect: Core Crushing or Movement -- 3.5.3 Core Defect: Core‐Splice Spacing Exceeding Limits -- 3.5.4 Core Defect: Incorrect or Variable Core Thickness -- 3.5.5 Core Defect: Core Degradation Due to Core Defect - Water Entrapment in Core -- 3.5.6 Core Defect: Incorrect Core Density -- 3.5.7 Core Defect: Misaligned Nodes or Unbonded Nodes in Core Cell -- 3.5.8 Core Defect: Mismatched Nodes or Corrugations -- 3.5.9 Core Defect: Corrosion -- 3.5.10 Facesheet Defect: Pillowing, Wrinkling, or Orange Peel -- 3.5.11 Facesheet Defect: Dents in Facesheet -- 3.5.12 Facesheet/Core Disbond -- 3.5.13 Defects in Adhesive Fillets -- 3.5.14 Edge‐Closeout Defects -- 3.6 Defects by Location: Mixed‐Mode Fiber and Matrix Defects -- 3.6.1 Impact Damage with Fiber Breakage -- 3.6.2 Bearing Damage -- 3.6.3 Edge Cracking and Crushing -- 3.6.4 Cuts, Scratches, and Gouges -- 3.6.5 Composite Damage from Lightning Strikes -- 3.6.6 Misdrilled Holes -- 3.6.7 Mismatched Parts -- 3.6.8 Incorrect Fiber Orientation or Missing Plies -- 3.6.9 Galvanic Corrosion -- 3.6.10 Resin Migration and Uneven Fiber Volume Fraction -- 3.6.11 Residual Stresses and Dimensional Conformance.

3.6.12 Delaminations -- 3.6.13 Composite Degradation Due to Excessive Temperature and Chemical Exposure -- 3.6.13.1 Fibers -- 3.6.13.2 Matrix -- 3.7 Defects by Location: Fastened and Bonded Joint Defects -- 3.7.1 Fastened Joints -- 3.7.1.1 Bearing Damage -- 3.7.1.2 Hole Delamination/Fraying -- 3.7.1.3 Hole Elongation or Out‐of‐Round Holes -- 3.7.1.4 Fastener Seating -- 3.7.1.5 Fastener Over‐Torque -- 3.7.1.6 Fastener Under‐Torque -- 3.7.1.7 Missing Fastener -- 3.7.1.8 Porosity Near the Fastener -- 3.7.1.9 Resin‐Starved Bearing Surface -- 3.7.1.10 Insufficient Edge Margins -- 3.7.1.11 Tilted Hole -- 3.7.2 Bonded Joints -- 3.7.2.1 Poor Cure Due to Improper Material Chemistry: Mixing of Two‐Part Resins or Material Past Shelf‐ or Out Life -- 3.7.2.2 Incorrect Bondline Thickness, Scarf, or Overlap Length -- 3.7.2.3 Zero‐Volume Disbond or Long‐Term Bond Failure Due to Contamination or Incorrect Surface Preparation -- 3.7.2.4 Bondline Degradation Due to Moisture or Incorrect Pressure During Processing -- 3.7.2.5 Bondline Degradation Due to Incorrect Heating Procedures -- 3.8 Future Directions -- References -- Chapter 4 Inspection Methods -- 4.1 Introduction -- 4.2 Mechanical Vibration NDT Methods -- 4.2.1 Low Frequency Methods -- 4.2.1.1 Tap Testing -- 4.2.1.2 Mechanical Impedance -- 4.2.1.3 Membrane Resonance -- 4.2.2 High Frequency Ultrasonic Methods -- 4.2.2.1 Pulse Echo and Thru‐Transmission -- 4.2.2.2 Pulse Echo Ultrasonics -- 4.2.2.3 Through‐Transmission Ultrasonics -- 4.2.2.4 Phased Array Ultrasonics -- 4.2.2.5 Ultrasonic Spectroscopy for Zero‐Volume Disbonds -- 4.2.2.6 Ultrasonic Methods for Fiber Distortion -- 4.2.2.7 Guided Lamb Waves -- 4.2.2.8 Air‐Coupled Ultrasonics -- 4.2.3 Acoustic Emission -- 4.3 Visual and Enhanced Visual Methods -- 4.3.1 Visual Inspections -- 4.3.2 Verification or Pressure Film -- 4.3.3 Leak Testing.

4.4 Electromagnetic Radiation (X‐Ray, Gamma, and Neutron) -- 4.4.1 Radiography -- 4.4.2 Computed Tomography -- 4.4.3 Compton Scattering -- 4.4.4 Neutron Tomography -- 4.5 Optical Methods -- 4.5.1 Shearography -- 4.5.2 Digital Image Correlation (DIC) -- 4.5.3 Hyperspectral Near Infrared Method for Resin Migration and Fiber Distortion -- 4.5.4 Laser Profilometers and Image Processing -- 4.6 Strain Measurement -- 4.7 Thermography -- 4.7.1 Active Thermography -- 4.7.1.1 Thermoelastic Stress Analysis -- 4.7.2 Passive Thermography -- 4.8 Destructive Methods -- 4.8.1 Physical Tests -- 4.8.2 Density and Porosity Measurements -- 4.8.3 Microscopy -- 4.9 NDT Standards -- References -- Chapter 5 Effects of Defects - Design Values and Statistical Considerations -- 5.1 Introduction -- 5.2 Effects on Laminate Properties -- 5.2.1 Cure Cycle Anomalies -- 5.2.1.1 Porosity -- 5.2.1.2 Nonuniformly Distributed Voids (Stratified Porosity) -- 5.2.1.3 Stratified Porosity or Delamination in L‐Shaped Details -- 5.2.1.4 In‐Plane Fiber Misalignment -- 5.2.1.5 Fiber Waviness (Out‐of‐Plane) -- 5.2.1.6 Waviness in Curved Parts -- 5.2.1.7 Ply Gaps and Overlaps -- 5.2.2 Cuts, Scratches, and Gouges -- 5.2.3 Edge Delaminations -- 5.2.4 Foreign Object Impact -- 5.3 Effects on Sandwich Composites Properties -- 5.3.1 Facesheet to Core Disbonding -- 5.3.2 Facesheet Pillowing -- 5.3.3 Node Disbonds -- 5.3.4 Core Splicing -- 5.4 Effects on Bolted Joint Properties -- 5.4.1 Delaminations at the Holes -- 5.4.2 Oversize Holes -- 5.4.3 Over‐Torqued Fasteners -- 5.4.4 Porosity Near Fasteners -- 5.5 Effects on Bonded Joint Properties -- 5.5.1 Assessment of Defects in Design of Bonded Joints -- 5.6 Statistical Considerations -- 5.6.1 Mean versus Design Values -- 5.6.2 Simpson's Paradox -- 5.6.3 Design of Experiments -- 5.7 Suggested Approach for Evaluation of Defects.

5.8 Evaluation of Scaling and Multiple Defects -- References -- Chapter 6 Selected Case Studies in Effects of Defects -- 6.1 Introduction -- 6.2 Case Study 1: The Ohio Timber Road II Wind Turbine Failure Due to Wrinkles -- 6.2.1 Event -- 6.2.2 Background -- 6.2.3 Investigation -- 6.2.4 Lessons Learned -- 6.3 Case Study 2: Faulty Repairs of Sandwich Core Structure -- 6.3.1 Event -- 6.3.2 Lessons Learned -- 6.4 Case Study 3: Bonded Repair Failure -- 6.4.1 Event -- 6.4.2 Investigation -- 6.4.3 Lessons Learned -- 6.5 Case Study 4: Air Transat 961 Sandwich‐Composite Failure -- 6.5.1 Event -- 6.5.2 Investigation -- 6.5.3 Lessons Learned -- 6.6 Case Study 5: Debonding Failure of a Sandwich‐Composite Cryogenic Fuel Tank -- 6.6.1 Event -- 6.6.2 Investigation -- 6.6.3 Lessons Learned -- References -- Glossary -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.