ORPP logo
Image from Google Jackets

Handbook of Chemical Looping Technology.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2018Edition: 1st edDescription: 1 online resource (490 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527809349
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of Chemical Looping TechnologyDDC classification:
  • 621.4023
LOC classification:
  • TP157 .H363 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Section 1 Chemical Looping Process Concepts -- Chapter 1 The Moving Bed Fuel Reactor Process -- 1.1 Introduction -- 1.2 Modes of Moving Bed Fuel Reactor Operation -- 1.2.1 Counter‐Current Moving Bed Fuel Reactor: -- 1.2.2 Co‐current Moving Bed Fuel Reactor -- 1.3 Chemical Looping Reactor System Design Considerations for Moving Bed Fuel Reactors -- 1.3.1 Mass Balance and Solids Circulation Rate -- 1.3.2 Heat Management -- 1.3.3 Sizing of Reactors -- 1.3.4 Sizing of the Air Reactor -- 1.3.5 Gas Sealing -- 1.3.6 Solids Circulation Control -- 1.3.7 Process Pressure Balance -- 1.4 Counter‐Current Moving Bed Fuel Reactor Applications in Chemical Looping Processes -- 1.4.1 Counter‐Current Moving Bed Fuel Reactor Modeling -- 1.4.2 Syngas Chemical Looping Process -- 1.4.3 Coal Direct Chemical Looping Process Development -- 1.5 Co‐current Moving Bed Fuel Reactor Applications in Chemical Looping Processes -- 1.5.1 Coal to Syngas Chemical Looping Process -- 1.5.2 Methane to Syngas Chemical Looping Process -- 1.5.3 CO2 Utilization Potential -- 1.5.4 MTS Modularization Strategy -- 1.6 Concluding Remarks -- References -- Chapter 2 Single and Double Loop Reacting Systems -- 2.1 Introduction -- 2.2 Reactor Types -- 2.2.1 Fluid Beds -- 2.2.2 Spouted Beds -- 2.2.3 Risers -- 2.3 Gas Sealing and Solids Control -- 2.4 Single Loop Reactors -- 2.5 Double (or More) Loop Reactors -- 2.6 Solid Fuel Reactors -- 2.6.1 Volatiles -- 2.6.2 Carbon Leakage -- 2.6.3 Ash Separation -- 2.7 Pressurized Reactors -- 2.8 Solid Circulation Rate -- 2.9 Lessons Learned -- 2.9.1 Solids and Pressure Balance Control -- 2.9.2 Solids in Reactor Exhaust -- 2.9.3 Condensation in Exhaust -- 2.9.4 Self‐Fluidization -- 2.9.5 Cyclones -- 2.10 Summary -- Acknowledgements -- References.
Chapter 3 Chemical Looping Processes Using Packed Bed Reactors -- 3.1 Introduction -- 3.2 Oxygen Carriers for Packed Bed Reactor -- 3.3 Chemical Looping Combustion -- 3.4 Chemical Looping Reforming -- 3.5 Other Chemical Looping Processes -- 3.5.1 Chemical Looping for H2 Production -- 3.5.2 Cu-Ca Process for Sorption Enhanced Reforming -- 3.6 Conclusions -- Nomenclature -- References -- Chapter 4 Chemical Looping with Oxygen Uncoupling (CLOU) Processes -- 4.1 Introduction -- 4.2 Fundamentals of the CLOU Process -- 4.2.1 CLOU Oxygen Carriers -- 4.2.2 CLOU Oxygen Carrier Oxidation -- 4.2.3 CLOU Oxygen Carrier Reduction ("Uncoupling") -- 4.3 CLOU Reactor Design -- 4.3.1 Fuel Flow and Overall Balances -- 4.3.2 Energy Considerations -- 4.3.3 Air Reactor Design -- 4.3.4 Fuel Reactor Design -- 4.3.5 Loop Seal Design -- 4.3.6 Sulfur -- 4.4 Status of CLOU Technology Development -- 4.4.1 Laboratory‐Scale CLOU Testing -- 4.4.2 Development‐Scale and Pilot‐Scale Systems -- 4.5 Future Development of CLOU Technology -- References -- Chapter 5 Pressurized Chemical Looping Combustion for Solid Fuel -- 5.1 Introduction -- 5.2 Coal‐Based Pressurized Chemical Looping Combustion Combined Cycle -- 5.2.1 Concept -- 5.2.2 Process of the Direct Coal‐Fueled PCLC Developed by UK‐CAER -- 5.2.3 Process of the Direct Coal‐Fueled PCLC at SEU, China -- 5.3 Fundamentals and Experiments of Pressurized Chemical Looping Combustion -- 5.3.1 Transient Oxidation of Magnetite to Hematite in PCLC -- 5.3.2 The Solid Behaviors in the Solid‐Fueled PCLC (Fuel Reactor Side) -- 5.3.2.1 Materials -- 5.3.2.2 Experiment Setup -- 5.3.2.3 In situ Gasification -- 5.3.2.4 Combustion Efficiency -- 5.4 Direct Coal‐Fueled PCLC Demonstration in Laboratory Scale -- 5.4.1 100 kWth PCLC Facility at SEU, China -- 5.4.2 50 kWth PCLC Unit at UK‐CAER -- 5.5 Tech‐economic Analysis.
5.5.1 Technical Performance Evaluation on the Direct Coal‐Fueled PCLC‐CC -- 5.5.1.1 Combined Cycle -- 5.5.1.2 PCLC Unit -- 5.5.1.3 Physical Properties -- 5.5.1.4 Case Study -- 5.5.1.5 Optimization of Plant Configuration -- 5.5.2 Performance of the UK‐CAER's PCLC‐CC Plant -- 5.6 Technical Gaps and Challenges -- References -- Section 2 Oxygen Carriers -- Chapter 6 Regenerable, Economically Affordable Fe2O3‐Based Oxygen Carrier for Chemical Looping Combustion -- 6.1 Introduction -- 6.2 Primary Oxide Selection -- 6.3 Supported Single Oxides -- 6.4 Natural Oxide Ores -- 6.5 Supported Binary Oxides System -- 6.5.1 Thermodynamic Analysis of CuO-Fe2O3 Phases -- 6.5.2 Decomposition-Oxidation Cycle of Chemical Looping Oxygen Uncoupling -- 6.5.3 Coal Chemical Looping Combustion -- 6.5.4 Chemical Looping Combustion with Methane as Fuel -- 6.5.5 Bulk Phase and Oxidation State Analysis of Mixed CuO-Fe2O3 System -- 6.5.6 Synergetic Reactivity-Structure of CuO-Fe2O3 Oxygen Carriers -- 6.6 Kinetic Networks of Fe2O3‐based Oxygen Carriers -- 6.7 50‐kWth Methane/Air Chemical Looping Combustion Tests -- References -- Chapter 7 Oxygen Carriers for Chemical‐Looping with Oxygen Uncoupling (CLOU) -- 7.1 Introduction -- 7.2 Thermodynamics of CLOU -- 7.2.1 Equilibrium Partial Pressure of O2 -- 7.2.2 Thermal Considerations -- 7.3 Overview of Experimental Investigations of CLOU Materials -- 7.3.1 Copper Oxide -- 7.3.2 Combined and Mixed Oxides -- 7.3.3 Naturally Occurring Oxygen Carriers -- 7.4 Kinetics of Oxidation and Reduction of Oxygen Carriers in CLOU -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Mixed Metal Oxide‐Based Oxygen Carriers for Chemical Looping Applications -- 8.1 Overview -- 8.2 Mixed Oxides for Chemical Looping with Oxygen Uncoupling (CLOU) -- 8.3 Mixed Oxides for iG‐CLC -- 8.4 Mixed Oxides for Chemical Looping Reforming (CLR).
8.4.1 Chemical Looping Reforming -- 8.4.2 Monometallic Redox Catalysts for CLR -- 8.5 Redox Catalyst Improvement Strategies -- 8.6 Mixed Oxides for Other Selective Oxidation Applications -- 8.6.1 Oxidative Coupling of Methane -- 8.6.2 Oxidative Dehydrogenation (ODH) of Ethane -- 8.7 Toward Rationalizing the Design of Mixed Metal Oxides -- 8.8 Future Directions -- References -- Chapter 9 Oxygen Carrier Structure and Attrition -- 9.1 Introduction -- 9.2 Oxygen Carrier Structure -- 9.2.1 Unsupported Oxygen Carriers -- 9.2.1.1 Surface -- 9.2.1.2 Structure -- 9.2.1.3 Gas Pores and Diffusion -- 9.2.1.4 Ilmenite -- 9.2.2 Supported Oxygen Carriers -- 9.2.2.1 Copper Oxides -- 9.2.2.2 Iron Oxides -- 9.3 Attrition -- 9.3.1 Sources of Attrition -- 9.3.2 Solids Properties Relevant to Attrition -- 9.3.2.1 Hardness -- 9.3.2.2 Fracture Toughness -- 9.3.3 Mechanistic Modeling of Attrition -- 9.3.3.1 Attrition due to Wear (Abrasion) -- 9.3.3.2 Impact Attrition -- 9.4 Attrition Modeling -- 9.4.1 Unsteady‐State Models -- 9.4.2 Steady‐State Models -- 9.4.3 System Modeling -- 9.5 Experimental Testing -- 9.5.1 Nanoindentation -- 9.5.2 Fluidized Beds -- 9.5.3 Impact Testing -- 9.5.4 Jet Cup -- References -- Section 3 Commercial Design Studies of CLC Systems -- Chapter 10 Computational Fluid Dynamics Modeling and Simulations of Fluidized Beds for Chemical Looping Combustion -- 10.1 Introduction -- 10.2 Reactor‐Level Simulations of CLC Using CFD -- 10.3 Governing Equations -- 10.4 Eulerian-Lagrangian Simulation of a Spouted Fluidized Bed in a CLC Fuel Reactor with Chemical Reactions -- 10.5 Spouted Fluidized Bed Simulation Results -- 10.6 Eulerian-Lagrangian Simulation of a Binary Particle Bed in a Carbon Stripper -- 10.7 Binary Particle Bed Simulation Results -- 10.8 Summary and Conclusions -- References.
Chapter 11 Calcium‐ and Iron‐Based Chemical Looping Combustion Processes -- 11.1 Introduction -- 11.2 CLC Plant Design, Modeling, and Cost Estimation Bases -- 11.2.1 Design Basis -- 11.2.2 Cost Estimation Basis -- 11.2.3 Reactor Modeling Basis -- 11.3 Chemical Looping Combustion Reference Plant Descriptions -- 11.3.1 General CLC Power Plant Configuration -- 11.3.2 Reference Plant Stream Conditions -- 11.4 Chemical Looping Combustion Reference Plant Performance -- 11.5 Chemical Looping Combustion Reference Plant Cost -- 11.6 Chemical Looping Combustion Reference Plant Performance and Cost Sensitivities -- 11.6.1 Reactor Temperature Sensitivity -- 11.6.2 Reactor Velocity Sensitivity -- 11.6.3 Carbon Gasification Efficiency Sensitivity -- 11.6.4 Reducer Oxygen Carrier Conversion Sensitivity -- 11.6.5 COE Sensitivity to Oxygen Carrier Makeup Rate and Price -- 11.6.6 COE Sensitivity to Char-Oxygen Carrier Separator Cost -- 11.7 Summary and Conclusions -- References -- Chapter 12 Simulations for Scale‐Up of Chemical Looping with Oxygen Uncoupling (CLOU) Systems -- 12.1 Introduction -- 12.2 Process Modeling -- 12.2.1 Background -- 12.2.2 Aspen Plus Modeling -- 12.2.3 Other Approaches to Material and Energy Balance Determinations -- 12.2.4 Autothermal Operation -- 12.2.5 Using Process Modeling for Steam Production Estimates -- 12.2.6 Summary -- 12.3 Computational Fluid Dynamic Simulations -- 12.3.1 Background -- 12.3.2 Summary of the Literature -- 12.3.3 Conclusions -- References -- Section 4 Other Chemical Looping Processes -- Chapter 13 Calcium Looping Carbon Capture Process -- 13.1 Introduction -- 13.1.1 Fundamental Principles of Calcium Looping Process -- 13.1.2 Thermodynamics and Reaction Equilibrium of CaO and CaCO3 -- 13.2 Current Status of Calcium Looping Process -- 13.2.1 Kilowatt‐Scale Calcium Looping Facility.
13.2.2 Megawatt‐Scale Calcium Looping Plant.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- Section 1 Chemical Looping Process Concepts -- Chapter 1 The Moving Bed Fuel Reactor Process -- 1.1 Introduction -- 1.2 Modes of Moving Bed Fuel Reactor Operation -- 1.2.1 Counter‐Current Moving Bed Fuel Reactor: -- 1.2.2 Co‐current Moving Bed Fuel Reactor -- 1.3 Chemical Looping Reactor System Design Considerations for Moving Bed Fuel Reactors -- 1.3.1 Mass Balance and Solids Circulation Rate -- 1.3.2 Heat Management -- 1.3.3 Sizing of Reactors -- 1.3.4 Sizing of the Air Reactor -- 1.3.5 Gas Sealing -- 1.3.6 Solids Circulation Control -- 1.3.7 Process Pressure Balance -- 1.4 Counter‐Current Moving Bed Fuel Reactor Applications in Chemical Looping Processes -- 1.4.1 Counter‐Current Moving Bed Fuel Reactor Modeling -- 1.4.2 Syngas Chemical Looping Process -- 1.4.3 Coal Direct Chemical Looping Process Development -- 1.5 Co‐current Moving Bed Fuel Reactor Applications in Chemical Looping Processes -- 1.5.1 Coal to Syngas Chemical Looping Process -- 1.5.2 Methane to Syngas Chemical Looping Process -- 1.5.3 CO2 Utilization Potential -- 1.5.4 MTS Modularization Strategy -- 1.6 Concluding Remarks -- References -- Chapter 2 Single and Double Loop Reacting Systems -- 2.1 Introduction -- 2.2 Reactor Types -- 2.2.1 Fluid Beds -- 2.2.2 Spouted Beds -- 2.2.3 Risers -- 2.3 Gas Sealing and Solids Control -- 2.4 Single Loop Reactors -- 2.5 Double (or More) Loop Reactors -- 2.6 Solid Fuel Reactors -- 2.6.1 Volatiles -- 2.6.2 Carbon Leakage -- 2.6.3 Ash Separation -- 2.7 Pressurized Reactors -- 2.8 Solid Circulation Rate -- 2.9 Lessons Learned -- 2.9.1 Solids and Pressure Balance Control -- 2.9.2 Solids in Reactor Exhaust -- 2.9.3 Condensation in Exhaust -- 2.9.4 Self‐Fluidization -- 2.9.5 Cyclones -- 2.10 Summary -- Acknowledgements -- References.

Chapter 3 Chemical Looping Processes Using Packed Bed Reactors -- 3.1 Introduction -- 3.2 Oxygen Carriers for Packed Bed Reactor -- 3.3 Chemical Looping Combustion -- 3.4 Chemical Looping Reforming -- 3.5 Other Chemical Looping Processes -- 3.5.1 Chemical Looping for H2 Production -- 3.5.2 Cu-Ca Process for Sorption Enhanced Reforming -- 3.6 Conclusions -- Nomenclature -- References -- Chapter 4 Chemical Looping with Oxygen Uncoupling (CLOU) Processes -- 4.1 Introduction -- 4.2 Fundamentals of the CLOU Process -- 4.2.1 CLOU Oxygen Carriers -- 4.2.2 CLOU Oxygen Carrier Oxidation -- 4.2.3 CLOU Oxygen Carrier Reduction ("Uncoupling") -- 4.3 CLOU Reactor Design -- 4.3.1 Fuel Flow and Overall Balances -- 4.3.2 Energy Considerations -- 4.3.3 Air Reactor Design -- 4.3.4 Fuel Reactor Design -- 4.3.5 Loop Seal Design -- 4.3.6 Sulfur -- 4.4 Status of CLOU Technology Development -- 4.4.1 Laboratory‐Scale CLOU Testing -- 4.4.2 Development‐Scale and Pilot‐Scale Systems -- 4.5 Future Development of CLOU Technology -- References -- Chapter 5 Pressurized Chemical Looping Combustion for Solid Fuel -- 5.1 Introduction -- 5.2 Coal‐Based Pressurized Chemical Looping Combustion Combined Cycle -- 5.2.1 Concept -- 5.2.2 Process of the Direct Coal‐Fueled PCLC Developed by UK‐CAER -- 5.2.3 Process of the Direct Coal‐Fueled PCLC at SEU, China -- 5.3 Fundamentals and Experiments of Pressurized Chemical Looping Combustion -- 5.3.1 Transient Oxidation of Magnetite to Hematite in PCLC -- 5.3.2 The Solid Behaviors in the Solid‐Fueled PCLC (Fuel Reactor Side) -- 5.3.2.1 Materials -- 5.3.2.2 Experiment Setup -- 5.3.2.3 In situ Gasification -- 5.3.2.4 Combustion Efficiency -- 5.4 Direct Coal‐Fueled PCLC Demonstration in Laboratory Scale -- 5.4.1 100 kWth PCLC Facility at SEU, China -- 5.4.2 50 kWth PCLC Unit at UK‐CAER -- 5.5 Tech‐economic Analysis.

5.5.1 Technical Performance Evaluation on the Direct Coal‐Fueled PCLC‐CC -- 5.5.1.1 Combined Cycle -- 5.5.1.2 PCLC Unit -- 5.5.1.3 Physical Properties -- 5.5.1.4 Case Study -- 5.5.1.5 Optimization of Plant Configuration -- 5.5.2 Performance of the UK‐CAER's PCLC‐CC Plant -- 5.6 Technical Gaps and Challenges -- References -- Section 2 Oxygen Carriers -- Chapter 6 Regenerable, Economically Affordable Fe2O3‐Based Oxygen Carrier for Chemical Looping Combustion -- 6.1 Introduction -- 6.2 Primary Oxide Selection -- 6.3 Supported Single Oxides -- 6.4 Natural Oxide Ores -- 6.5 Supported Binary Oxides System -- 6.5.1 Thermodynamic Analysis of CuO-Fe2O3 Phases -- 6.5.2 Decomposition-Oxidation Cycle of Chemical Looping Oxygen Uncoupling -- 6.5.3 Coal Chemical Looping Combustion -- 6.5.4 Chemical Looping Combustion with Methane as Fuel -- 6.5.5 Bulk Phase and Oxidation State Analysis of Mixed CuO-Fe2O3 System -- 6.5.6 Synergetic Reactivity-Structure of CuO-Fe2O3 Oxygen Carriers -- 6.6 Kinetic Networks of Fe2O3‐based Oxygen Carriers -- 6.7 50‐kWth Methane/Air Chemical Looping Combustion Tests -- References -- Chapter 7 Oxygen Carriers for Chemical‐Looping with Oxygen Uncoupling (CLOU) -- 7.1 Introduction -- 7.2 Thermodynamics of CLOU -- 7.2.1 Equilibrium Partial Pressure of O2 -- 7.2.2 Thermal Considerations -- 7.3 Overview of Experimental Investigations of CLOU Materials -- 7.3.1 Copper Oxide -- 7.3.2 Combined and Mixed Oxides -- 7.3.3 Naturally Occurring Oxygen Carriers -- 7.4 Kinetics of Oxidation and Reduction of Oxygen Carriers in CLOU -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Mixed Metal Oxide‐Based Oxygen Carriers for Chemical Looping Applications -- 8.1 Overview -- 8.2 Mixed Oxides for Chemical Looping with Oxygen Uncoupling (CLOU) -- 8.3 Mixed Oxides for iG‐CLC -- 8.4 Mixed Oxides for Chemical Looping Reforming (CLR).

8.4.1 Chemical Looping Reforming -- 8.4.2 Monometallic Redox Catalysts for CLR -- 8.5 Redox Catalyst Improvement Strategies -- 8.6 Mixed Oxides for Other Selective Oxidation Applications -- 8.6.1 Oxidative Coupling of Methane -- 8.6.2 Oxidative Dehydrogenation (ODH) of Ethane -- 8.7 Toward Rationalizing the Design of Mixed Metal Oxides -- 8.8 Future Directions -- References -- Chapter 9 Oxygen Carrier Structure and Attrition -- 9.1 Introduction -- 9.2 Oxygen Carrier Structure -- 9.2.1 Unsupported Oxygen Carriers -- 9.2.1.1 Surface -- 9.2.1.2 Structure -- 9.2.1.3 Gas Pores and Diffusion -- 9.2.1.4 Ilmenite -- 9.2.2 Supported Oxygen Carriers -- 9.2.2.1 Copper Oxides -- 9.2.2.2 Iron Oxides -- 9.3 Attrition -- 9.3.1 Sources of Attrition -- 9.3.2 Solids Properties Relevant to Attrition -- 9.3.2.1 Hardness -- 9.3.2.2 Fracture Toughness -- 9.3.3 Mechanistic Modeling of Attrition -- 9.3.3.1 Attrition due to Wear (Abrasion) -- 9.3.3.2 Impact Attrition -- 9.4 Attrition Modeling -- 9.4.1 Unsteady‐State Models -- 9.4.2 Steady‐State Models -- 9.4.3 System Modeling -- 9.5 Experimental Testing -- 9.5.1 Nanoindentation -- 9.5.2 Fluidized Beds -- 9.5.3 Impact Testing -- 9.5.4 Jet Cup -- References -- Section 3 Commercial Design Studies of CLC Systems -- Chapter 10 Computational Fluid Dynamics Modeling and Simulations of Fluidized Beds for Chemical Looping Combustion -- 10.1 Introduction -- 10.2 Reactor‐Level Simulations of CLC Using CFD -- 10.3 Governing Equations -- 10.4 Eulerian-Lagrangian Simulation of a Spouted Fluidized Bed in a CLC Fuel Reactor with Chemical Reactions -- 10.5 Spouted Fluidized Bed Simulation Results -- 10.6 Eulerian-Lagrangian Simulation of a Binary Particle Bed in a Carbon Stripper -- 10.7 Binary Particle Bed Simulation Results -- 10.8 Summary and Conclusions -- References.

Chapter 11 Calcium‐ and Iron‐Based Chemical Looping Combustion Processes -- 11.1 Introduction -- 11.2 CLC Plant Design, Modeling, and Cost Estimation Bases -- 11.2.1 Design Basis -- 11.2.2 Cost Estimation Basis -- 11.2.3 Reactor Modeling Basis -- 11.3 Chemical Looping Combustion Reference Plant Descriptions -- 11.3.1 General CLC Power Plant Configuration -- 11.3.2 Reference Plant Stream Conditions -- 11.4 Chemical Looping Combustion Reference Plant Performance -- 11.5 Chemical Looping Combustion Reference Plant Cost -- 11.6 Chemical Looping Combustion Reference Plant Performance and Cost Sensitivities -- 11.6.1 Reactor Temperature Sensitivity -- 11.6.2 Reactor Velocity Sensitivity -- 11.6.3 Carbon Gasification Efficiency Sensitivity -- 11.6.4 Reducer Oxygen Carrier Conversion Sensitivity -- 11.6.5 COE Sensitivity to Oxygen Carrier Makeup Rate and Price -- 11.6.6 COE Sensitivity to Char-Oxygen Carrier Separator Cost -- 11.7 Summary and Conclusions -- References -- Chapter 12 Simulations for Scale‐Up of Chemical Looping with Oxygen Uncoupling (CLOU) Systems -- 12.1 Introduction -- 12.2 Process Modeling -- 12.2.1 Background -- 12.2.2 Aspen Plus Modeling -- 12.2.3 Other Approaches to Material and Energy Balance Determinations -- 12.2.4 Autothermal Operation -- 12.2.5 Using Process Modeling for Steam Production Estimates -- 12.2.6 Summary -- 12.3 Computational Fluid Dynamic Simulations -- 12.3.1 Background -- 12.3.2 Summary of the Literature -- 12.3.3 Conclusions -- References -- Section 4 Other Chemical Looping Processes -- Chapter 13 Calcium Looping Carbon Capture Process -- 13.1 Introduction -- 13.1.1 Fundamental Principles of Calcium Looping Process -- 13.1.2 Thermodynamics and Reaction Equilibrium of CaO and CaCO3 -- 13.2 Current Status of Calcium Looping Process -- 13.2.1 Kilowatt‐Scale Calcium Looping Facility.

13.2.2 Megawatt‐Scale Calcium Looping Plant.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.