ORPP logo
Image from Google Jackets

Microwave Power Amplifier Design with MMIC Modules.

By: Material type: TextTextPublisher: Norwood : Artech House, 2018Copyright date: ©2018Edition: 1st edDescription: 1 online resource (395 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781630815257
Subject(s): Genre/Form: Additional physical formats: Print version:: Microwave Power Amplifier Design with MMIC ModulesDDC classification:
  • 621.38412
LOC classification:
  • TK7871.58.P6 .H387 2018
Online resources:
Contents:
Intro -- Microwave Power Amplifier Design with MMIC Modules -- Contents -- Preface -- Introduction -- Part I: Useful Microwave Design Concepts -- Part II: Designing the Power Amplifier -- Part III: Designing the Power Amplifier System -- Summary -- Chapter 1 Introduction -- 1.1 Introduction to Designing Microwave Solid State Power Amplifiers -- 1.2 Applications of SSPAs -- 1.3 A Typical SSPA Configuration -- 1.4 Typical Documents Starting a Project -- 1.5 General Format of the SCD -- 1.5.1 Paragraph 1.0: Scope -- 1.5.2 Paragraph 2.0: Applicable Documents -- 1.5.3 Paragraph 3.0: Requirements -- 1.5.4 Paragraph 4.0: Verification -- 1.5.5 Paragraph 5.0: Packaging -- 1.5.6 Paragraph 6.0: Notes -- 1.6 Requirements Section of an SCD -- 1.6.1 Electrical Requirements -- 1.6.2 Mechanical Requirements -- 1.6.3 Environmental Requirements -- 1.6.4 Other Design Criteria -- References -- Part I Useful Microwave Design Concepts -- Chapter 2 Lumped Components in RF and Microwave Circuitry -- 2.1 Applicability of Lumped Element Analysis -- 2.1.1 Calculating Wavelengths -- 2.1.2 Example: Calculating Wavelengths for Lumped Circuit Analysis -- 2.2 Capacitor Characteristics at High Frequencies -- 2.2.1 Single-Layer and Multilayer Capacitor Construction -- 2.2.2 High-Frequency Capacitor Models -- 2.2.3 Capacitor Losses (Q) -- 2.2.4 Capacitor Resonance -- 2.3 Resistor Characteristics at High Frequencies -- 2.3.1 High-Frequency Surface Mount Resistors -- 2.3.2 Flip-Chip Surface Mount Resistors -- 2.3.3 Thick-Film and Thin-Film Surface-Mount Resistors -- 2.3.4 High-Frequency Effects of Thick-Film and Thin-Film Resistors -- 2.3.5 Notes on Thin-Film Resistors -- 2.3.6 Notes on Thick-Film Resistors -- 2.4 Inductors -- 2.4.1 Calculating Inductance of a Cylindrical Coil of Wire -- 2.4.2 Inductors at High Frequencies -- 2.4.3 Inductors at Resonance.
2.4.4 Inductance of a Straight Wire -- 2.4.5 Planar Spiral Inductors -- 2.4.6 Conical Inductors -- 2.4.7 Inductance of Via Holes -- 2.4.8 Inductance of Bond Wire -- 2.4.9 Inductance of Flat or Ribbon Wire -- References -- Chapter 3 Transmission Lines -- 3.1 Introduction to Transmission Line Theory -- 3.2 Common Transmission Line Topologies -- 3.3 Transmission Line Characteristics Using Lumped Circuit Elements -- 3.3.1 Distributed Lumped Constant Model -- 3.3.2 Modeling a Microstrip Transmission Line with Distributed Lumped Elements -- 3.3.3 Characteristic Impedance of Transmission Line from the Lumped Circuit Model -- 3.4 Lossless Transmission Line -- 3.5 Characteristics of a Signal Traveling Through an Infinite Transmission Line -- 3.5.1 Attenuation Constant α -- 3.5.2 Phase Constant β -- 3.6 50Ω Transmission Lines -- 3.7 Example of a Passive Microwave Circuit Using Transmission Lines at Different Impedances: Wilkinson Power Divider -- References -- Chapter 4 S-Parameters -- 4.1 Introduction -- 4.2 The S-Parameter Matrix -- 4.2.1 Passive Symmetrical Devices -- 4.2.2 The S-Parameter Matrix -- 4.2.3 Notes on S-Parameters -- 4.3 S-Parameters of Cascaded Devices: ABCD Parameters -- 4.3.1 Defining ABCD Parameters -- 4.3.2 Cascading ABCD Networks -- 4.3.3 Converting S-Parameters to ABCD Parameters and ABCD Parameters to S-Parameters -- 4.4 S-Parameters of Multiport Networks -- 4.4.1 Example of a Multiport Device: Branch Line Coupler -- 4.5 S-Parameter Summary -- References -- Chapter 5 Microstrip Transmission Lines -- 5.1 Microstrip Transmission Lines -- 5.2 Dielectric Material -- 5.3 Effective Conductor Width of a Microstrip Transmission Line -- 5.4 Effective Dielectric Constant in a Microstrip Transmission Line -- 5.5 Wave Velocity and Wavelength of a Signal Traveling Through a Dielectric Material.
5.6 The Effective Wave Velocity and Wavelength in a Microstrip Transmission Line -- 5.7 Calculating the Impedance of a Microstrip Transmission Line -- 5.8 Calculating the Line Width for a Desired Impedance -- 5.9 Optimizing Bends in Microstrip Transmission Lines -- 5.10 Transmission Line Losses -- 5.10.1 Transmission-Line Conductor Losses -- 5.10.2 Dielectric Material Losses -- 5.10.3 Summary of Transmission-Line Losses -- References -- Chapter 6 Circuit Matching and VSWR -- 6.1 Introduction -- 6.2 Maximum Power Transfer -- 6.3 Electromagnetic Waves Traveling Through an Infinite Transmission Line -- 6.3.1 Distributed Attenuation -- 6.3.2 Distributed Delay -- 6.4 Reflected Waves in a Transmission Line -- 6.4.1 Reflections from a Short-Circuit Load Impedance -- 6.4.2 Reflections from an Open-Circuit Load Impedance -- 6.5 Voltage Standing-Wave Ratio (VSWR) -- 6.5.1 VSWR as a Function of the Reflection Coefficient -- 6.5.2 Reflection Coefficient as a Function of the VSWR -- 6.5.3 VSWR as a Function of the Source and Load Impedance -- 6.6 Mismatch Loss -- 6.7 Mismatch Uncertainty -- 6.7.1 Amplitude Uncertainty -- 6.7.2 Phase Uncertainty -- 6.7.3 VSWR Uncertainty -- 6.8 Matching Impedances -- 6.8.1 Matching with a Quarter-Wave Transmission Line -- 6.8.2 Using a Matched Resistive Attenuator to Improve VSWR -- References -- Chapter 7 Noise in Microwave Circuits -- 7.1 Introduction -- 7.2 Properties of Noise -- 7.2.1 Thermal Noise -- 7.2.2 Flicker Noise -- 7.2.3 Phase Noise -- 7.3 Noise Figure -- 7.4 Noise Temperature -- 7.5 Modeling the Noise Figure of a Single Amplifier -- 7.6 Noise Figure of Passive Devices -- 7.7 Noise Figure of Cascaded Devices -- 7.7.1 Cascading Two Amplifiers -- 7.7.2 Noise Figure of a Cascade of Multiple Devices -- 7.8 Noise Figure Calculation Example -- References -- Chapter 8 Nonlinear Signal Distortion -- 8.1 Introduction.
8.2 Distortion Originating in the Frequency Domain -- 8.3 Distortion of a Single Sinusoidal Signal Due to Device Nonlinearity -- 8.3.1 Mathematical Representation of a Nonlinear Transfer Function -- 8.3.2 Harmonic Distortion Due a Device Nonlinearity -- 8.3.3 Gain Through a Nonlinear Device -- 8.3.4 Gain Compression -- 8.4 Intermodulation Interference Frequencies -- 8.5 Second-Order Intermodulation Distortion -- 8.5.1 Levels and Spectrum of Second-Order Intermodulation Products -- 8.5.2 Frequency Spectrum of Second-Order Intermodulation Products When the Carriers Are Closely Spaced -- 8.5.3 Frequency Spectrum of Even-Order Intermodulation Products When the Carriers Are Closely Spaced -- 8.5.4 Second-Order Intercept Point (IP2) and Second-Order Intermodulation Levels -- 8.5.5 Notes on Even-Order Intermodulation Products and Intercept Points: -- 8.6 Third-Order Intermodulation Distortion -- 8.6.1 The Frequency Spectrum of Third-Order Intermodulation Products -- 8.6.2 Calculating the Level of Third-Order Intermodulation Products -- 8.6.3 Determining the Relative Level of IP3 and P1dB -- 8.6.4 Third-Order Intercept Point -- 8.6.4 Relative Level of P1dB with Respect to IP3 -- 8.7 Spectrum of Higher-Order Intermodulation Products -- 8.8 Intermodulation Analysis of Cascaded Devices -- 8.8.1 Calculating the Third-Order Intercept Point of Two Devices in Cascade -- 8.8.2 Calculating the Third-Order Intercept Point of Multiple Devices in Cascade -- References -- Chapter 9 System Cascade and Dynamic Range Analysis -- 9.1 Introduction to Cascade Analysis and Dynamic Range -- 9.2 Minimum Signal Level Limitations -- 9.3 Maximum Signal Level Limitations -- 9.3.1 Continuous-Wave (CW) Single Signal Maximum Levels -- 9.3.2 Maximum Level for a Single-Signal Modulated Carrier -- 9.4 A Typical Spurious-Free Dynamic Range Calculation.
9.4.1 Calculating the Normalized Thermal Noise -- 9.4.2 Third-Order Intermodulation Interference (IM3) -- 9.4.3 Calculating Spurious-Free Dynamic Range -- 9.5 Dynamic Range Analysis: Example -- 9.6 Out-of-Band Noise Power in a Transmitter: Example -- 9.7 Carrier Triple Beats Interference -- 9.8 Multiple Carrier (N &gt -- 3) Interference -- References -- Part II Designing the Power Amplifier -- Chapter 10 Defining the Output Power Requirements in a Communication Link and Other Wireless Systems -- 10.1 Introduction: Power Amplifier Requirements -- 10.2 Power Amplifier Requirements in a Wireless Communications Link -- 10.3 Design a Receiver Input to Meet a Required Minimum C/N in a Communications System -- 10.4 Path Loss Calculation -- 10.5 Transmitted Power: Equivalent Isotropic Radiated Power (EIRP) -- 10.5.1 Antenna Gain -- 10.5.2 EIRP -- 10.5.3 Example: Determining Power Amplifier Requirements [Pout(dBm)] -- 10.6 G/T Receiver Comparison Indicator -- 10.7 Power Amplifiers for Radar Systems -- 10.7.1 Radar Equation -- 10.7.2 Radar Power Amplifier Linearity -- References -- Chapter 11 Parallel Amplifier Topology Enhancing SSPA Performance -- 11.1 Introduction -- 11.2 Performance of Parallel Amplifiers Using Near-Ideal Perfectly Matched Components -- 11.2.1 Gain Calculation for an Ideal Parallel Amplifier Module -- 11.2.2 Noise Figure Calculation for an Ideal Parallel Amplifier Combiner Module -- 11.2.3 Available Output Power in an Ideal Parallel Amplifier Module -- 11.2.4 Summary of Parallel Amplifier Combining Using Ideal Devices -- 11.3 VSWR Mismatch Loss -- 11.3.1 Reflection Coefficient -- 11.3.2 Effective VSWR at the Interface of Two Nonideal Devices -- 11.3.3 VSWR as a Function of Source and Load Impedance -- 11.4 Nonideal Power Divider and Power Combiner Losses Effecting Gain, Noise Figure, and Intercept Point -- 11.4.1 Power Divider (PD1) Losses.
11.4.2 Power Combiner (PC1) Losses.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Microwave Power Amplifier Design with MMIC Modules -- Contents -- Preface -- Introduction -- Part I: Useful Microwave Design Concepts -- Part II: Designing the Power Amplifier -- Part III: Designing the Power Amplifier System -- Summary -- Chapter 1 Introduction -- 1.1 Introduction to Designing Microwave Solid State Power Amplifiers -- 1.2 Applications of SSPAs -- 1.3 A Typical SSPA Configuration -- 1.4 Typical Documents Starting a Project -- 1.5 General Format of the SCD -- 1.5.1 Paragraph 1.0: Scope -- 1.5.2 Paragraph 2.0: Applicable Documents -- 1.5.3 Paragraph 3.0: Requirements -- 1.5.4 Paragraph 4.0: Verification -- 1.5.5 Paragraph 5.0: Packaging -- 1.5.6 Paragraph 6.0: Notes -- 1.6 Requirements Section of an SCD -- 1.6.1 Electrical Requirements -- 1.6.2 Mechanical Requirements -- 1.6.3 Environmental Requirements -- 1.6.4 Other Design Criteria -- References -- Part I Useful Microwave Design Concepts -- Chapter 2 Lumped Components in RF and Microwave Circuitry -- 2.1 Applicability of Lumped Element Analysis -- 2.1.1 Calculating Wavelengths -- 2.1.2 Example: Calculating Wavelengths for Lumped Circuit Analysis -- 2.2 Capacitor Characteristics at High Frequencies -- 2.2.1 Single-Layer and Multilayer Capacitor Construction -- 2.2.2 High-Frequency Capacitor Models -- 2.2.3 Capacitor Losses (Q) -- 2.2.4 Capacitor Resonance -- 2.3 Resistor Characteristics at High Frequencies -- 2.3.1 High-Frequency Surface Mount Resistors -- 2.3.2 Flip-Chip Surface Mount Resistors -- 2.3.3 Thick-Film and Thin-Film Surface-Mount Resistors -- 2.3.4 High-Frequency Effects of Thick-Film and Thin-Film Resistors -- 2.3.5 Notes on Thin-Film Resistors -- 2.3.6 Notes on Thick-Film Resistors -- 2.4 Inductors -- 2.4.1 Calculating Inductance of a Cylindrical Coil of Wire -- 2.4.2 Inductors at High Frequencies -- 2.4.3 Inductors at Resonance.

2.4.4 Inductance of a Straight Wire -- 2.4.5 Planar Spiral Inductors -- 2.4.6 Conical Inductors -- 2.4.7 Inductance of Via Holes -- 2.4.8 Inductance of Bond Wire -- 2.4.9 Inductance of Flat or Ribbon Wire -- References -- Chapter 3 Transmission Lines -- 3.1 Introduction to Transmission Line Theory -- 3.2 Common Transmission Line Topologies -- 3.3 Transmission Line Characteristics Using Lumped Circuit Elements -- 3.3.1 Distributed Lumped Constant Model -- 3.3.2 Modeling a Microstrip Transmission Line with Distributed Lumped Elements -- 3.3.3 Characteristic Impedance of Transmission Line from the Lumped Circuit Model -- 3.4 Lossless Transmission Line -- 3.5 Characteristics of a Signal Traveling Through an Infinite Transmission Line -- 3.5.1 Attenuation Constant α -- 3.5.2 Phase Constant β -- 3.6 50Ω Transmission Lines -- 3.7 Example of a Passive Microwave Circuit Using Transmission Lines at Different Impedances: Wilkinson Power Divider -- References -- Chapter 4 S-Parameters -- 4.1 Introduction -- 4.2 The S-Parameter Matrix -- 4.2.1 Passive Symmetrical Devices -- 4.2.2 The S-Parameter Matrix -- 4.2.3 Notes on S-Parameters -- 4.3 S-Parameters of Cascaded Devices: ABCD Parameters -- 4.3.1 Defining ABCD Parameters -- 4.3.2 Cascading ABCD Networks -- 4.3.3 Converting S-Parameters to ABCD Parameters and ABCD Parameters to S-Parameters -- 4.4 S-Parameters of Multiport Networks -- 4.4.1 Example of a Multiport Device: Branch Line Coupler -- 4.5 S-Parameter Summary -- References -- Chapter 5 Microstrip Transmission Lines -- 5.1 Microstrip Transmission Lines -- 5.2 Dielectric Material -- 5.3 Effective Conductor Width of a Microstrip Transmission Line -- 5.4 Effective Dielectric Constant in a Microstrip Transmission Line -- 5.5 Wave Velocity and Wavelength of a Signal Traveling Through a Dielectric Material.

5.6 The Effective Wave Velocity and Wavelength in a Microstrip Transmission Line -- 5.7 Calculating the Impedance of a Microstrip Transmission Line -- 5.8 Calculating the Line Width for a Desired Impedance -- 5.9 Optimizing Bends in Microstrip Transmission Lines -- 5.10 Transmission Line Losses -- 5.10.1 Transmission-Line Conductor Losses -- 5.10.2 Dielectric Material Losses -- 5.10.3 Summary of Transmission-Line Losses -- References -- Chapter 6 Circuit Matching and VSWR -- 6.1 Introduction -- 6.2 Maximum Power Transfer -- 6.3 Electromagnetic Waves Traveling Through an Infinite Transmission Line -- 6.3.1 Distributed Attenuation -- 6.3.2 Distributed Delay -- 6.4 Reflected Waves in a Transmission Line -- 6.4.1 Reflections from a Short-Circuit Load Impedance -- 6.4.2 Reflections from an Open-Circuit Load Impedance -- 6.5 Voltage Standing-Wave Ratio (VSWR) -- 6.5.1 VSWR as a Function of the Reflection Coefficient -- 6.5.2 Reflection Coefficient as a Function of the VSWR -- 6.5.3 VSWR as a Function of the Source and Load Impedance -- 6.6 Mismatch Loss -- 6.7 Mismatch Uncertainty -- 6.7.1 Amplitude Uncertainty -- 6.7.2 Phase Uncertainty -- 6.7.3 VSWR Uncertainty -- 6.8 Matching Impedances -- 6.8.1 Matching with a Quarter-Wave Transmission Line -- 6.8.2 Using a Matched Resistive Attenuator to Improve VSWR -- References -- Chapter 7 Noise in Microwave Circuits -- 7.1 Introduction -- 7.2 Properties of Noise -- 7.2.1 Thermal Noise -- 7.2.2 Flicker Noise -- 7.2.3 Phase Noise -- 7.3 Noise Figure -- 7.4 Noise Temperature -- 7.5 Modeling the Noise Figure of a Single Amplifier -- 7.6 Noise Figure of Passive Devices -- 7.7 Noise Figure of Cascaded Devices -- 7.7.1 Cascading Two Amplifiers -- 7.7.2 Noise Figure of a Cascade of Multiple Devices -- 7.8 Noise Figure Calculation Example -- References -- Chapter 8 Nonlinear Signal Distortion -- 8.1 Introduction.

8.2 Distortion Originating in the Frequency Domain -- 8.3 Distortion of a Single Sinusoidal Signal Due to Device Nonlinearity -- 8.3.1 Mathematical Representation of a Nonlinear Transfer Function -- 8.3.2 Harmonic Distortion Due a Device Nonlinearity -- 8.3.3 Gain Through a Nonlinear Device -- 8.3.4 Gain Compression -- 8.4 Intermodulation Interference Frequencies -- 8.5 Second-Order Intermodulation Distortion -- 8.5.1 Levels and Spectrum of Second-Order Intermodulation Products -- 8.5.2 Frequency Spectrum of Second-Order Intermodulation Products When the Carriers Are Closely Spaced -- 8.5.3 Frequency Spectrum of Even-Order Intermodulation Products When the Carriers Are Closely Spaced -- 8.5.4 Second-Order Intercept Point (IP2) and Second-Order Intermodulation Levels -- 8.5.5 Notes on Even-Order Intermodulation Products and Intercept Points: -- 8.6 Third-Order Intermodulation Distortion -- 8.6.1 The Frequency Spectrum of Third-Order Intermodulation Products -- 8.6.2 Calculating the Level of Third-Order Intermodulation Products -- 8.6.3 Determining the Relative Level of IP3 and P1dB -- 8.6.4 Third-Order Intercept Point -- 8.6.4 Relative Level of P1dB with Respect to IP3 -- 8.7 Spectrum of Higher-Order Intermodulation Products -- 8.8 Intermodulation Analysis of Cascaded Devices -- 8.8.1 Calculating the Third-Order Intercept Point of Two Devices in Cascade -- 8.8.2 Calculating the Third-Order Intercept Point of Multiple Devices in Cascade -- References -- Chapter 9 System Cascade and Dynamic Range Analysis -- 9.1 Introduction to Cascade Analysis and Dynamic Range -- 9.2 Minimum Signal Level Limitations -- 9.3 Maximum Signal Level Limitations -- 9.3.1 Continuous-Wave (CW) Single Signal Maximum Levels -- 9.3.2 Maximum Level for a Single-Signal Modulated Carrier -- 9.4 A Typical Spurious-Free Dynamic Range Calculation.

9.4.1 Calculating the Normalized Thermal Noise -- 9.4.2 Third-Order Intermodulation Interference (IM3) -- 9.4.3 Calculating Spurious-Free Dynamic Range -- 9.5 Dynamic Range Analysis: Example -- 9.6 Out-of-Band Noise Power in a Transmitter: Example -- 9.7 Carrier Triple Beats Interference -- 9.8 Multiple Carrier (N &gt -- 3) Interference -- References -- Part II Designing the Power Amplifier -- Chapter 10 Defining the Output Power Requirements in a Communication Link and Other Wireless Systems -- 10.1 Introduction: Power Amplifier Requirements -- 10.2 Power Amplifier Requirements in a Wireless Communications Link -- 10.3 Design a Receiver Input to Meet a Required Minimum C/N in a Communications System -- 10.4 Path Loss Calculation -- 10.5 Transmitted Power: Equivalent Isotropic Radiated Power (EIRP) -- 10.5.1 Antenna Gain -- 10.5.2 EIRP -- 10.5.3 Example: Determining Power Amplifier Requirements [Pout(dBm)] -- 10.6 G/T Receiver Comparison Indicator -- 10.7 Power Amplifiers for Radar Systems -- 10.7.1 Radar Equation -- 10.7.2 Radar Power Amplifier Linearity -- References -- Chapter 11 Parallel Amplifier Topology Enhancing SSPA Performance -- 11.1 Introduction -- 11.2 Performance of Parallel Amplifiers Using Near-Ideal Perfectly Matched Components -- 11.2.1 Gain Calculation for an Ideal Parallel Amplifier Module -- 11.2.2 Noise Figure Calculation for an Ideal Parallel Amplifier Combiner Module -- 11.2.3 Available Output Power in an Ideal Parallel Amplifier Module -- 11.2.4 Summary of Parallel Amplifier Combining Using Ideal Devices -- 11.3 VSWR Mismatch Loss -- 11.3.1 Reflection Coefficient -- 11.3.2 Effective VSWR at the Interface of Two Nonideal Devices -- 11.3.3 VSWR as a Function of Source and Load Impedance -- 11.4 Nonideal Power Divider and Power Combiner Losses Effecting Gain, Noise Figure, and Intercept Point -- 11.4.1 Power Divider (PD1) Losses.

11.4.2 Power Combiner (PC1) Losses.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.