ORPP logo
Image from Google Jackets

Handbook of Operations Research Applications at Railroads.

By: Material type: TextTextSeries: International Series in Operations Research and Management Science SeriesPublisher: New York, NY : Springer, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (287 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781489975713
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of Operations Research Applications at RailroadsDDC classification:
  • 385.24068
LOC classification:
  • T57.6-.97
Online resources:
Contents:
Intro -- Dedication -- Preface -- Contents -- Chapter 1: Train Scheduling -- 1.1 Introduction and Background -- 1.2 Role of Trains in the Railroad Operations Research Landscape -- 1.3 Types of Trains and Related Definitions -- 1.4 Specifying Road Trains -- 1.5 OR Challenges: Designing the Road Train Plan -- 1.5.1 Road Train Design Problem -- 1.5.2 Single Versus Multi-Block Trains -- 1.6 Train Routing/Block-to-Train Assignment Problems -- 1.6.1 Example Problem -- 1.6.2 Feasible Solution -- 1.7 Train Scheduling (Timing) Problem -- 1.7.1 Key Assumptions -- 1.7.2 Scheduling Variables -- 1.7.3 Scheduling Constraints -- 1.7.4 Cost Parameters -- 1.7.5 Observations on Solution Strategies -- 1.7.6 Special Cases -- 1.7.7 Problem Examples -- 1.8 Specifying Unit Trains -- 1.9 Local Service Specification Strategies -- 1.10 Train Plan Design Versus Real-Time Operations -- 1.11 Opportunities -- References -- Chapter 2: Locomotive Scheduling Problem -- 2.1 Introduction -- 2.2 Background on Locomotive Scheduling -- 2.2.1 Hard Constraints -- 2.2.2 Soft Constraints -- 2.2.3 Objective Function -- 2.3 Mathematical Models for Locomotive Scheduling -- 2.3.1 Space-Time Network Construction -- 2.3.2 Problem Size and Stage-Wise Solution Approach -- 2.3.3 Consist Flow Formulation for the LPP -- 2.3.3.1 Notation -- 2.3.3.2 Decision Variables -- 2.3.3.3 Objective Function -- 2.3.3.4 Constraints -- 2.4 Incorporating Practical Requirements -- 2.4.1 Cab-Signal Requirements -- 2.4.2 Foreign Power Requirements -- 2.5 Applications of the Model -- 2.5.1 Quantifying the Impact of Varying Minimum Connection Time -- 2.5.2 Quantifying the Effect of Changing Transport Volume on Key Performance Characteristics -- References -- Chapter 3: Simulation of Line of Road Operations -- 3.1 Introduction -- 3.2 Fundamental Elements for a Dispatching Algorithm.
3.3 Developing a Dispatching Algorithm -- 3.3.1 Overview -- 3.3.2 Example -- 3.3.3 Simplified Assumptions -- 3.4 Future Directions -- Chapter 4: Car Scheduling/Trip Planning -- 4.1 Introduction and Background -- 4.2 Car Scheduling/Trip Planning Systems in Context -- 4.3 Plan Compliance and the Value of Trip Plans -- 4.4 Current Industry Practices: Basic Car Scheduling/ Trip Planning Concepts -- 4.4.1 Current Industry Practices: Block Selection Logic -- 4.4.2 Current Industry Practices: Train Selection Logic -- 4.4.3 Current Industry Practices: Other Special Considerations -- 4.5 OR Challenge: Typical Reasons of Trip Plan Failures -- 4.6 Trip Plan Output Usages -- 4.7 OR Challenges: Alternate Approaches to Car Scheduling and Special Cases -- 4.8 Capacitation and Reservations -- 4.8.1 Specifying Capacities -- 4.8.2 Managing Reservations -- 4.9 Planning and Optimization -- 4.10 Time-Space Network Solutions -- 4.10.1 Dynamic Car Scheduling -- 4.11 Opportunities -- References -- Chapter 5: Railway Blocking Process -- 5.1 Introduction and Background -- 5.1.1 Impact of Blocking on System Efficiency and Service -- 5.1.2 Specifying the Blocking Plan -- 5.1.3 Plan Complexity -- 5.2 Current Industry Practices: The Blocking Rules Concept -- 5.2.1 Yard-Blocks, Train-Blocks, Class Codes, and Block Swaps -- 5.2.2 Local Service -- 5.3 The Table-Based Blocking Systems OR Challenge -- 5.4 Algorithmic Blocking -- 5.5 Examples of Areas Presenting OR Challenges -- 5.6 Semi-manual Blocking Plan Design Techniques -- 5.6.1 Incremental Blocking Plan Design Techniques -- 5.6.2 Tuning an Existing Plan -- 5.6.3 Checking Circuity and Excessive Handlings -- 5.6.4 Change Traffic Volume at a Yard -- 5.6.5 Designing Blocking Plans Using a Clean-Sheet Approach -- 5.6.6 Tuning Table-Based, Traffic Destination Attribute Rules Using Relaxation.
5.6.7 Additional Methods for Testing Plans -- 5.6.8 Triplet Analysis for Blocking Plan Comparisons -- 5.6.9 Tree View Analysis -- 5.7 Specialized Blocking Situations -- 5.8 Blocking Plan Optimization -- 5.8.1 Considerations That Automated Blocking Optimization Techniques Should Consider -- 5.8.2 Mathematical Representation of the Block Design Optimization Problem -- 5.8.2.1 Data -- 5.8.2.2 Variables -- 5.8.2.3 Constraints -- 5.8.2.4 Objective -- Optimization Techniques -- Heuristic Approach -- Initial Blocking Plan -- Iteratively Improve the Plan -- Resequencing Quickly -- Finding Global Optimum -- Changing Yard Penalties -- Advanced Mathematical Programming -- 5.9 Additional Considerations -- 5.10 Opportunities -- References -- Chapter 6: Crew Scheduling Problem -- 6.1 Introduction -- 6.2 Background on Crew Scheduling -- 6.2.1 Terminology -- 6.2.2 Regulatory and Contractual Requirements -- 6.3 Mathematical Models for Crew Scheduling -- 6.3.1 Model Inputs -- 6.3.2 Space-Time Network Construction -- 6.3.3 Mathematical Formulation -- 6.3.4 Solution Methods -- 6.3.4.1 Successive Constraint Generation (SCG) -- 6.3.4.2 Quadratic Cost-Perturbation (QCP) Algorithm -- 6.4 Applications of the Model -- 6.4.1 Tactical Benefits -- 6.4.2 Planning Benefits -- 6.4.3 Strategic Benefits -- References -- Chapter 7: Empty Railcar Distribution -- 7.1 Introduction -- 7.2 Background on Empty Railcar Distribution -- 7.2.1 Local Distribution and Shipper Pools -- 7.2.2 Rules-Based Transaction Processing Systems -- 7.2.3 Nonintegrated Optimization Systems -- 7.3 Current Day Integrated Real-Time Optimization Systems -- 7.3.1 Model Inputs -- 7.3.1.1 Car Supply: Actual and Predicted -- 7.3.1.2 Car Orders: Actual and Predicted -- 7.3.1.3 Shipper Preferences -- 7.3.1.4 Cost Parameters -- 7.3.1.5 Operational Information -- 7.3.2 Model Framework -- 7.3.2.1 Model Preprocessing.
7.3.2.2 Model Formulation -- 7.3.3 Model Output Post Processing -- 7.3.4 Systems Integration -- 7.3.4.1 Optimization Engine: Customer Car Order System -- 7.3.4.2 Optimization Engine-Transactional Equipment Distribution System -- 7.3.4.3 Transactional Equipment Distribution System: Car Movement Management and Tracking System -- 7.3.4.4 Optimization Model: Operational Systems: Decision Making Process Integration -- 7.3.5 Reported Benefits -- 7.3.6 Other Implementation Considerations -- 7.3.6.1 User Acceptance -- 7.3.6.2 Model Thrashing -- 7.3.7 Other Modeling Considerations -- 7.3.7.1 Endogenizing Stochasticity -- 7.3.7.2 Including Blocking Costs in Empty Car Assignment -- 7.3.8 Other Areas of Application in Rail -- References -- Chapter 8: Network Analysis and Simulation -- 8.1 Introduction and Background -- 8.1.1 Planning and Simulation -- 8.1.2 Other Types of Simulations -- 8.2 Types of Network Level Simulations -- 8.2.1 Uncapacitated Deterministic Simulations with Fixed Plans -- 8.2.2 Uncapacitated Deterministic Simulations with Probabilistic Connections -- 8.2.3 Capacitated Simulations with Fixed Plans -- 8.2.4 Capacitated Simulations with Dynamic Plan Elements -- 8.2.5 Full Monte-Carlo Capacitated Simulations -- 8.3 Resource Estimation -- 8.3.1 Estimation of Crews -- 8.3.2 Estimation of Locomotives -- 8.3.3 Estimation of Railcar Requirements -- 8.3.4 Estimation of Yard Workloads -- 8.4 Roles of Network Simulation -- 8.4.1 Mergers -- 8.4.2 Network Modifications -- 8.4.3 Emergency Situations or Special Circumstances -- 8.5 Average Day Analysis -- 8.5.1 Uncapacitated Average Day Analysis -- 8.5.2 Capacitated Average Day Analysis -- 8.5.2.1 Achieving a Robust Train Volume Formulation -- 8.5.2.2 Train-Block Prioritization -- 8.5.2.3 Fill Blocks -- 8.5.2.4 Capacitation by Length and Gross Weight -- 8.6 Future Directions and Opportunities -- References.
Chapter 9: Simulation of Yard and Terminal Operations -- 9.1 Introduction -- 9.2 Reasons to Simulate -- 9.3 The Problem -- 9.3.1 Train Arrival -- 9.3.2 Handling the Inbound Crew and Power -- 9.3.3 Inbound Car Inspection -- 9.3.4 Switch (Classify) Cars -- 9.3.5 Train Assembly -- 9.3.6 Final Train Assembly -- 9.3.7 Train Departure -- 9.4 Matching the Analytic Approach with Study Requirements -- 9.5 Building a Yard Simulation -- 9.5.1 Conceptual Design -- 9.5.1.1 Simulation Engine -- 9.5.1.2 Decision Engine -- 9.5.1.3 Inbound Process -- 9.5.1.4 Switching Process -- 9.5.1.5 Train Assembly Process -- 9.5.1.6 Departure Process -- 9.5.2 Data for Simulation -- 9.5.3 Other Issues to Be Resolved -- 9.6 Recent Past to Current State of the Art -- 9.7 Future Directions -- Chapter 10: Operations Research in Rail Pricing and Revenue Management -- 10.1 Introduction -- 10.1.1 U.S. Freight Rail Pricing History -- 10.1.2 Revenue Management for Rail: Importance -- 10.1.3 Revenue Management for Rail: Challenges -- 10.1.4 Revenue Management for Rail: Recent Opportunities -- 10.2 Analytical Techniques in Freight Revenue Management -- 10.3 Characterizing Customer Behavior: Estimating Product Demand -- 10.3.1 Forecasting Demand Levels -- 10.3.2 Predicting Customer Price Sensitivity -- 10.4 Research in Revenue Management Models -- 10.4.1 Train and Block-Based Capacity Approaches -- 10.4.2 Service-Based Pricing Strategies -- 10.4.3 Container-Centric Yield Management -- 10.5 Future Directions and Opportunities for Revenue Management and Freight Rail -- References -- Chapter 11: Intermodal Rail -- 11.1 Introduction and Background Information -- 11.1.1 Definition of Intermodal -- 11.1.2 Brief History of Intermodal -- 11.1.3 Equipment Variations -- 11.1.4 Role of Railroads and IMCs -- 11.1.5 Chassis Pools, Both Domestic and International.
11.2 Examples of Decisions to Be Made Where OR Models Can Be Used.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Dedication -- Preface -- Contents -- Chapter 1: Train Scheduling -- 1.1 Introduction and Background -- 1.2 Role of Trains in the Railroad Operations Research Landscape -- 1.3 Types of Trains and Related Definitions -- 1.4 Specifying Road Trains -- 1.5 OR Challenges: Designing the Road Train Plan -- 1.5.1 Road Train Design Problem -- 1.5.2 Single Versus Multi-Block Trains -- 1.6 Train Routing/Block-to-Train Assignment Problems -- 1.6.1 Example Problem -- 1.6.2 Feasible Solution -- 1.7 Train Scheduling (Timing) Problem -- 1.7.1 Key Assumptions -- 1.7.2 Scheduling Variables -- 1.7.3 Scheduling Constraints -- 1.7.4 Cost Parameters -- 1.7.5 Observations on Solution Strategies -- 1.7.6 Special Cases -- 1.7.7 Problem Examples -- 1.8 Specifying Unit Trains -- 1.9 Local Service Specification Strategies -- 1.10 Train Plan Design Versus Real-Time Operations -- 1.11 Opportunities -- References -- Chapter 2: Locomotive Scheduling Problem -- 2.1 Introduction -- 2.2 Background on Locomotive Scheduling -- 2.2.1 Hard Constraints -- 2.2.2 Soft Constraints -- 2.2.3 Objective Function -- 2.3 Mathematical Models for Locomotive Scheduling -- 2.3.1 Space-Time Network Construction -- 2.3.2 Problem Size and Stage-Wise Solution Approach -- 2.3.3 Consist Flow Formulation for the LPP -- 2.3.3.1 Notation -- 2.3.3.2 Decision Variables -- 2.3.3.3 Objective Function -- 2.3.3.4 Constraints -- 2.4 Incorporating Practical Requirements -- 2.4.1 Cab-Signal Requirements -- 2.4.2 Foreign Power Requirements -- 2.5 Applications of the Model -- 2.5.1 Quantifying the Impact of Varying Minimum Connection Time -- 2.5.2 Quantifying the Effect of Changing Transport Volume on Key Performance Characteristics -- References -- Chapter 3: Simulation of Line of Road Operations -- 3.1 Introduction -- 3.2 Fundamental Elements for a Dispatching Algorithm.

3.3 Developing a Dispatching Algorithm -- 3.3.1 Overview -- 3.3.2 Example -- 3.3.3 Simplified Assumptions -- 3.4 Future Directions -- Chapter 4: Car Scheduling/Trip Planning -- 4.1 Introduction and Background -- 4.2 Car Scheduling/Trip Planning Systems in Context -- 4.3 Plan Compliance and the Value of Trip Plans -- 4.4 Current Industry Practices: Basic Car Scheduling/ Trip Planning Concepts -- 4.4.1 Current Industry Practices: Block Selection Logic -- 4.4.2 Current Industry Practices: Train Selection Logic -- 4.4.3 Current Industry Practices: Other Special Considerations -- 4.5 OR Challenge: Typical Reasons of Trip Plan Failures -- 4.6 Trip Plan Output Usages -- 4.7 OR Challenges: Alternate Approaches to Car Scheduling and Special Cases -- 4.8 Capacitation and Reservations -- 4.8.1 Specifying Capacities -- 4.8.2 Managing Reservations -- 4.9 Planning and Optimization -- 4.10 Time-Space Network Solutions -- 4.10.1 Dynamic Car Scheduling -- 4.11 Opportunities -- References -- Chapter 5: Railway Blocking Process -- 5.1 Introduction and Background -- 5.1.1 Impact of Blocking on System Efficiency and Service -- 5.1.2 Specifying the Blocking Plan -- 5.1.3 Plan Complexity -- 5.2 Current Industry Practices: The Blocking Rules Concept -- 5.2.1 Yard-Blocks, Train-Blocks, Class Codes, and Block Swaps -- 5.2.2 Local Service -- 5.3 The Table-Based Blocking Systems OR Challenge -- 5.4 Algorithmic Blocking -- 5.5 Examples of Areas Presenting OR Challenges -- 5.6 Semi-manual Blocking Plan Design Techniques -- 5.6.1 Incremental Blocking Plan Design Techniques -- 5.6.2 Tuning an Existing Plan -- 5.6.3 Checking Circuity and Excessive Handlings -- 5.6.4 Change Traffic Volume at a Yard -- 5.6.5 Designing Blocking Plans Using a Clean-Sheet Approach -- 5.6.6 Tuning Table-Based, Traffic Destination Attribute Rules Using Relaxation.

5.6.7 Additional Methods for Testing Plans -- 5.6.8 Triplet Analysis for Blocking Plan Comparisons -- 5.6.9 Tree View Analysis -- 5.7 Specialized Blocking Situations -- 5.8 Blocking Plan Optimization -- 5.8.1 Considerations That Automated Blocking Optimization Techniques Should Consider -- 5.8.2 Mathematical Representation of the Block Design Optimization Problem -- 5.8.2.1 Data -- 5.8.2.2 Variables -- 5.8.2.3 Constraints -- 5.8.2.4 Objective -- Optimization Techniques -- Heuristic Approach -- Initial Blocking Plan -- Iteratively Improve the Plan -- Resequencing Quickly -- Finding Global Optimum -- Changing Yard Penalties -- Advanced Mathematical Programming -- 5.9 Additional Considerations -- 5.10 Opportunities -- References -- Chapter 6: Crew Scheduling Problem -- 6.1 Introduction -- 6.2 Background on Crew Scheduling -- 6.2.1 Terminology -- 6.2.2 Regulatory and Contractual Requirements -- 6.3 Mathematical Models for Crew Scheduling -- 6.3.1 Model Inputs -- 6.3.2 Space-Time Network Construction -- 6.3.3 Mathematical Formulation -- 6.3.4 Solution Methods -- 6.3.4.1 Successive Constraint Generation (SCG) -- 6.3.4.2 Quadratic Cost-Perturbation (QCP) Algorithm -- 6.4 Applications of the Model -- 6.4.1 Tactical Benefits -- 6.4.2 Planning Benefits -- 6.4.3 Strategic Benefits -- References -- Chapter 7: Empty Railcar Distribution -- 7.1 Introduction -- 7.2 Background on Empty Railcar Distribution -- 7.2.1 Local Distribution and Shipper Pools -- 7.2.2 Rules-Based Transaction Processing Systems -- 7.2.3 Nonintegrated Optimization Systems -- 7.3 Current Day Integrated Real-Time Optimization Systems -- 7.3.1 Model Inputs -- 7.3.1.1 Car Supply: Actual and Predicted -- 7.3.1.2 Car Orders: Actual and Predicted -- 7.3.1.3 Shipper Preferences -- 7.3.1.4 Cost Parameters -- 7.3.1.5 Operational Information -- 7.3.2 Model Framework -- 7.3.2.1 Model Preprocessing.

7.3.2.2 Model Formulation -- 7.3.3 Model Output Post Processing -- 7.3.4 Systems Integration -- 7.3.4.1 Optimization Engine: Customer Car Order System -- 7.3.4.2 Optimization Engine-Transactional Equipment Distribution System -- 7.3.4.3 Transactional Equipment Distribution System: Car Movement Management and Tracking System -- 7.3.4.4 Optimization Model: Operational Systems: Decision Making Process Integration -- 7.3.5 Reported Benefits -- 7.3.6 Other Implementation Considerations -- 7.3.6.1 User Acceptance -- 7.3.6.2 Model Thrashing -- 7.3.7 Other Modeling Considerations -- 7.3.7.1 Endogenizing Stochasticity -- 7.3.7.2 Including Blocking Costs in Empty Car Assignment -- 7.3.8 Other Areas of Application in Rail -- References -- Chapter 8: Network Analysis and Simulation -- 8.1 Introduction and Background -- 8.1.1 Planning and Simulation -- 8.1.2 Other Types of Simulations -- 8.2 Types of Network Level Simulations -- 8.2.1 Uncapacitated Deterministic Simulations with Fixed Plans -- 8.2.2 Uncapacitated Deterministic Simulations with Probabilistic Connections -- 8.2.3 Capacitated Simulations with Fixed Plans -- 8.2.4 Capacitated Simulations with Dynamic Plan Elements -- 8.2.5 Full Monte-Carlo Capacitated Simulations -- 8.3 Resource Estimation -- 8.3.1 Estimation of Crews -- 8.3.2 Estimation of Locomotives -- 8.3.3 Estimation of Railcar Requirements -- 8.3.4 Estimation of Yard Workloads -- 8.4 Roles of Network Simulation -- 8.4.1 Mergers -- 8.4.2 Network Modifications -- 8.4.3 Emergency Situations or Special Circumstances -- 8.5 Average Day Analysis -- 8.5.1 Uncapacitated Average Day Analysis -- 8.5.2 Capacitated Average Day Analysis -- 8.5.2.1 Achieving a Robust Train Volume Formulation -- 8.5.2.2 Train-Block Prioritization -- 8.5.2.3 Fill Blocks -- 8.5.2.4 Capacitation by Length and Gross Weight -- 8.6 Future Directions and Opportunities -- References.

Chapter 9: Simulation of Yard and Terminal Operations -- 9.1 Introduction -- 9.2 Reasons to Simulate -- 9.3 The Problem -- 9.3.1 Train Arrival -- 9.3.2 Handling the Inbound Crew and Power -- 9.3.3 Inbound Car Inspection -- 9.3.4 Switch (Classify) Cars -- 9.3.5 Train Assembly -- 9.3.6 Final Train Assembly -- 9.3.7 Train Departure -- 9.4 Matching the Analytic Approach with Study Requirements -- 9.5 Building a Yard Simulation -- 9.5.1 Conceptual Design -- 9.5.1.1 Simulation Engine -- 9.5.1.2 Decision Engine -- 9.5.1.3 Inbound Process -- 9.5.1.4 Switching Process -- 9.5.1.5 Train Assembly Process -- 9.5.1.6 Departure Process -- 9.5.2 Data for Simulation -- 9.5.3 Other Issues to Be Resolved -- 9.6 Recent Past to Current State of the Art -- 9.7 Future Directions -- Chapter 10: Operations Research in Rail Pricing and Revenue Management -- 10.1 Introduction -- 10.1.1 U.S. Freight Rail Pricing History -- 10.1.2 Revenue Management for Rail: Importance -- 10.1.3 Revenue Management for Rail: Challenges -- 10.1.4 Revenue Management for Rail: Recent Opportunities -- 10.2 Analytical Techniques in Freight Revenue Management -- 10.3 Characterizing Customer Behavior: Estimating Product Demand -- 10.3.1 Forecasting Demand Levels -- 10.3.2 Predicting Customer Price Sensitivity -- 10.4 Research in Revenue Management Models -- 10.4.1 Train and Block-Based Capacity Approaches -- 10.4.2 Service-Based Pricing Strategies -- 10.4.3 Container-Centric Yield Management -- 10.5 Future Directions and Opportunities for Revenue Management and Freight Rail -- References -- Chapter 11: Intermodal Rail -- 11.1 Introduction and Background Information -- 11.1.1 Definition of Intermodal -- 11.1.2 Brief History of Intermodal -- 11.1.3 Equipment Variations -- 11.1.4 Role of Railroads and IMCs -- 11.1.5 Chassis Pools, Both Domestic and International.

11.2 Examples of Decisions to Be Made Where OR Models Can Be Used.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.