ORPP logo
Image from Google Jackets

Advanced Cardiac Imaging.

By: Contributor(s): Material type: TextTextSeries: Woodhead Publishing Series in Biomaterials SeriesPublisher: Cambridge : Elsevier Science & Technology, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (804 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781782422945
Subject(s): Genre/Form: Additional physical formats: Print version:: Advanced Cardiac ImagingDDC classification:
  • 616.10754
LOC classification:
  • RC683.5
Online resources:
Contents:
Front Cover -- Advanced Cardiac Imaging -- Copyright -- Contents -- Contributors -- Woodhead Publishing Series in Biomaterials -- Chapter 1: Advanced cardiac imaging -- 1.1 . Introduction -- 1.2 . Imaging the heart -- 1.3 . Techniques -- 1.3.1 . Echocardiography -- 1.3.2 . Nuclear cardiology -- 1.3.3 . Cardiac CT -- 1.3.4 . Cardiac MR -- 1.4 . Shared themes and challenges -- 1.4.1 . Multimodality imaging -- 1.4.2 . Evidence-based imaging -- 1.4.3 . Imaging safety -- 1.4.4 . Multidisciplinary collaboration -- 1.5 . Approach of the book -- Part One: Technological developments in cardiac imaging -- Chapter 2: Ultrasound/echocardiography -- 2.1 . Introduction -- 2.2 . Three-dimensional echocardiography [ 3,4 ] -- 2.2.1 . Matrix-array transducer -- 2.2.2 . Data acquisition-two modes -- 2.2.2.1 . Real-time 3D echocardiographic imaging -- Real-time 3D narrow volume -- Real-time 3D zoomed -- Real-time 3D colour Doppler -- 2.2.2.2 . ECG-triggered multi-beat 3D echocardiographic imaging -- Full volume 3D (gated) -- 2.2.3 . Challenges and limitations -- 2.2.3.1 . Temporal versus spatial resolution -- 2.2.3.2 . ECG gating and breath hold -- 2.2.3.3 . Echo dropouts -- 2.2.4 . Cropping -- 2.2.5 . Post acquisition display -- 2.2.5.1 . Volume rendering -- 2.2.5.2 . Surface rendering -- 2.2.5.3 . 3D tomographic slices -- 2.2.6 . 3D colour Doppler -- 2.2.7 . Stress echocardiography -- 2.2.8 . Implementation of 3D -- 2.2.9 . Conclusions -- 2.3 . Contrast echocardiography [ 3-6 ] -- 2.3.1 . Ultrasound contrast agents -- 2.3.2 . Physics of microbubbles -- 2.3.3 . Administration -- 2.3.4 . Safety of contrast imaging -- 2.3.5 . Mechanical index and imaging modes -- 2.3.5.1 . High MI (0.4-0.6) in intermittent static imaging -- 2.3.5.2 . Low to intermediate MI (&lt -- 0.1-0.3) in real-time continuous imaging.
2.3.5.3 . Recommendations from the European Association of Cardiovascular Imaging (EACVI) [ 4 ] -- 2.3.6 . Contrast imaging modes -- 2.3.6.1 . LV opacification and endocardial delineation -- 2.3.6.2 . Tissue characterization -- 2.3.6.3 . Myocardial perfusion -- 2.3.7 . Stress echocardiography with contrast -- 2.3.7.1 . Coronary flow reserve-offline image processing -- 2.3.8 . EACVI recommendations for LV opacification contrast echocardiography [ 5 ] -- 2.3.9 . Conclusions -- 2.4 . Deformation imaging -- 2.4.1 . Tissue Doppler imaging -- 2.4.1.1 . Myocardial velocity imaging -- Colour Doppler -- Pulsed Doppler -- Limitations to velocity imaging -- Angle dependency -- Movement of sample volume -- Reverberations -- Tethering and cardiac translation -- Load dependency -- 2.4.1.2 . Displacement imaging -- 2.4.1.3 . Strain imaging -- Definition of strain and strain rate -- Limitations of strain and strain rate by TDI -- Signal noise -- Resolution -- Angle dependency -- Reverberations -- 2.4.1.4 . TDI in clinical use -- 2.4.2 . Speckle tracking echocardiography -- 2.4.2.1 . Differences of strain from STE versus strain from TDI -- 2.4.2.2 . Limitations of STE strain -- 2.4.2.3 . Three-dimensional (3D) STE -- 2.5 . Future trends -- 2.5.1 . Image quality -- 2.5.2 . Interventional echocardiography -- 2.5.2.1 . Intracardiac echocardiography -- 2.5.2.2 . Fusion imaging -- 2.5.3 . Myocardial perfusion by contrast echocardiography -- 2.5.4 . Molecular imaging by contrast echocardiography -- 2.5.5 . Clinical indices -- 2.5.6 . Tissue characterization -- 2.6 . Further reading -- 2.6.1 . Books -- 2.6.2 . Journals -- 2.6.3 . Web-pages -- References -- Chapter 3: Single-photon emission computed tomography -- 3.1 . Introduction -- 3.2 . Physical principles of SPECT -- 3.3 . Camera designs -- 3.4 . Tracers -- 3.5 . Image processing and reconstruction.
3.5.1 . Filtered back projection ( FBP) -- 3.5.2 . Iterative reconstruction -- 3.5.3 . Attenuation correction -- 3.5.4 . Gated SPECT -- 3.5.5 . List mode acquisition -- 3.6 . Low-dose SPECT -- 3.7 . Dynamic SPECT -- 3.8 . Hybrid imaging -- References -- Chapter 4: Positron emission tomography -- 4.1 . Introduction -- 4.2 . Principles of PET -- 4.2.1 . Data acquisition -- 4.2.2 . Attenuation -- 4.2.3 . Corrections -- 4.2.4 . Image quality and accuracy -- 4.3 . Clinical applications -- 4.3.1 . Myocardial perfusion -- 4.3.2 . Perfusion tracer characteristics -- 4.3.3 . Imaging protocols -- 4.3.4 . Tracer production and availability -- 4.3.5 . Image interpretation -- 4.3.6 . Substrate metabolism -- 4.3.7 . Hybrid PET / CT and PET / MRI imaging -- 4.4 . Conclusion -- References -- Chapter 5: Computed tomography -- 5.1 . Development of cardiac CT -- 5.2 . Technical principles and contemporary technology -- 5.2.1 . Computed tomography -- 5.2.1.1 . Roentgen generation -- 5.2.1.2 . Roentgen detection -- 5.2.1.3 . Dual-source CT -- 5.2.1.4 . Scan modes -- 5.2.2 . ECG -synchronized CT of the heart -- 5.2.2.1 . ECG -gated spiral CT -- 5.2.2.2 . ECG -triggered axial CT -- 5.2.2.3 . ECG -triggered stationary mode -- 5.2.2.4 . ECG -triggered high-pitch mode -- 5.2.3 . Image reconstruction -- 5.2.3.1 . Filtered back-projection -- 5.2.3.2 . Iterative reconstruction -- 5.2.3.3 . Selectable reconstruction algorithms -- 5.2.4 . Multienergy imaging -- 5.3 . CT performance, image quality parameters, and artifacts -- 5.3.1 . Temporal resolution and heart rhythm -- 5.3.2 . Spatial resolution -- 5.3.3 . Contrast resolution versus image noise -- 5.4 . Cardiac CT applications -- 5.4.1 . Coronary CT angiography -- 5.4.2 . Calcium scan -- 5.4.3 . Dynamic reconstructions for contractile function analysis -- 5.4.4 . Infarct imaging.
5.5 . Postprocessing, secondary reconstruction, and assisted interpretation -- 5.6 . Radiation and dose reduction -- 5.6.1 . Measurement and reporting of dose -- 5.6.2 . Radiation exposure and dose reductions in cardiac CT -- 5.7 . Estimating the hemodynamic significance of CAD -- 5.7.1 . Myocardial perfusion imaging -- 5.7.1.1 . Static MPI -- 5.7.1.2 . Dynamic MPI -- 5.7.2 . Coronary contrast opacification patterns -- 5.7.3 . CT -based fractional flow reserve -- 5.8 . Future perspectives -- References -- Chapter 6: Magnetic resonance imaging -- 6.1 . Introduction -- 6.2 . Basic principles of NMR -- 6.2.1 . Intrinsic MR contrast -- 6.2.2 . MR contrast agents -- 6.2.3 . Morphological imaging -- 6.2.4 . Cine imaging -- 6.2.5 . Perfusion imaging -- 6.2.6 . Flow imaging -- 6.2.7 . MR angiography -- 6.2.8 . Strengths and weaknesses of CMR -- 6.3 . Fast imaging -- 6.3.1 . Introduction: the challenge of imaging quickly -- 6.3.1.1 . Image space versus k -space -- 6.3.1.2 . The need for speed -- 6.3.1.3 . Technical restrictions ( SAR, SNR, and gradient stimulation issues) -- 6.3.2 . Real time versus segmentation -- 6.3.2.1 . The benefits of real-time imaging -- 6.3.2.2 . The benefit of collecting over multiple heartbeats -- 6.3.2.3 . Issues with real-time data -- 6.3.3 . Sampling the data faster -- 6.3.3.1 . Use of echo planar imaging ( EPI) and spiral methods -- 6.3.3.2 . Use of higher gradient performance -- 6.3.4 . Less is more: sampling smarter -- 6.3.4.1 . Use of parallel imaging techniques -- 6.3.4.2 . Use of time acceleration approaches -- 6.3.5 . Do we really need to go faster? -- 6.3.5.1 . Navigated methods -- 6.4 . Perfusion, blood-oxygen-level-dependent, and late gadolinium enhancement imaging -- 6.4.1 . Introduction -- 6.4.2 . Viability assessment by CMR -- 6.4.3 . Ischemia assessment by CMR -- 6.4.4 . Future directions.
6.5 . Quantitative mapping techniques -- 6.5.1 . T1 mapping -- 6.5.1.1 . Native T1 mapping -- 6.5.1.2 . Postcontrast T1 mapping -- 6.5.1.3 . Extracellular volume ( ECV) estimation and mapping -- 6.5.2 . T2 mapping -- 6.5.3 . T2 * mapping -- 6.5.4 . Future directions -- 6.6 . Three-dimensional time-resolved ( 4D) flow -- 6.6.1 . Introduction -- 6.6.2 . Flow in the aorta-clinical applications -- 6.6.3 . Flow in the heart-clinical applications -- 6.6.4 . Challenges and future directions -- 6.7 . Magnetic resonance spectroscopy -- 6.7.1 . Background -- 6.7.1.1 . Technical considerations (see [132] for a review) -- 6.7.2 . Clinical applications of MRS -- 6.7.2.1 . Ischemic heart disease -- 6.7.2.2 . Heart failure -- 6.7.2.3 . Other pathologies -- 6.7.3 . Future developments -- 6.8 . Hyperpolarization -- 6.8.1 . Introduction -- 6.8.2 . Hyperpolarization theory -- 6.8.3 . Methodological considerations -- 6.8.4 . Review of preclinical literature -- 6.8.5 . Future clinical perspectives -- 6.9 . Latest technical developments and future trends -- 6.10 . Sources of further information -- 6.10.1 . Selected reference texts -- 6.10.2 . Professional bodies -- 6.10.3 . MRI safety -- Acknowledgments -- References -- Part Two: Clinical applications of cardiac imaging -- Chapter 7: Noninvasive coronary angiography -- 7.1 . Introduction -- 7.2 . Coronary artery calcium -- 7.3 . CT coronary angiography -- 7.3.1 . Accuracy -- 7.3.2 . Plaque characterization -- 7.3.3 . Prognosis by CTCA -- 7.3.4 . Percutaneous coronary intervention -- 7.3.5 . Coronary artery bypass grafts -- 7.3.6 . Accuracy -- 7.3.7 . Prognosis -- 7.3.8 . Transluminal arterial gradient and corrected coronary opacification -- 7.3.9 . Fractional flow reserve with CT -- 7.3.10 . CT myocardial perfusion imaging -- 7.3.11 . Downstream resource utilization and cost-effectiveness.
7.3.12 . CTCA in the emergency department.
Summary: Advances in Cardiac Imaging presents the latest information on heart disease and heart failure, major causes of death among western populations. In addition, the text explores the financial burden to public healthcare trusts and the vast amount of research and funding being channeled into programs not only to prevent such diseases, but also to diagnose them in early stages. This book provides readers with a thorough overview of many advances in cardiac imaging. Chapters include technological developments in cardiac imaging and imaging applications in a clinical setting with regard to detecting various types of heart disease. Presents a thorough overview of cardiac imaging technology Addresses specific applications for a number of cardiac diseases and how they can improve diagnoses and treatment protocols Includes technological developments in cardiac imaging and imaging applications in a clinical setting.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Advanced Cardiac Imaging -- Copyright -- Contents -- Contributors -- Woodhead Publishing Series in Biomaterials -- Chapter 1: Advanced cardiac imaging -- 1.1 . Introduction -- 1.2 . Imaging the heart -- 1.3 . Techniques -- 1.3.1 . Echocardiography -- 1.3.2 . Nuclear cardiology -- 1.3.3 . Cardiac CT -- 1.3.4 . Cardiac MR -- 1.4 . Shared themes and challenges -- 1.4.1 . Multimodality imaging -- 1.4.2 . Evidence-based imaging -- 1.4.3 . Imaging safety -- 1.4.4 . Multidisciplinary collaboration -- 1.5 . Approach of the book -- Part One: Technological developments in cardiac imaging -- Chapter 2: Ultrasound/echocardiography -- 2.1 . Introduction -- 2.2 . Three-dimensional echocardiography [ 3,4 ] -- 2.2.1 . Matrix-array transducer -- 2.2.2 . Data acquisition-two modes -- 2.2.2.1 . Real-time 3D echocardiographic imaging -- Real-time 3D narrow volume -- Real-time 3D zoomed -- Real-time 3D colour Doppler -- 2.2.2.2 . ECG-triggered multi-beat 3D echocardiographic imaging -- Full volume 3D (gated) -- 2.2.3 . Challenges and limitations -- 2.2.3.1 . Temporal versus spatial resolution -- 2.2.3.2 . ECG gating and breath hold -- 2.2.3.3 . Echo dropouts -- 2.2.4 . Cropping -- 2.2.5 . Post acquisition display -- 2.2.5.1 . Volume rendering -- 2.2.5.2 . Surface rendering -- 2.2.5.3 . 3D tomographic slices -- 2.2.6 . 3D colour Doppler -- 2.2.7 . Stress echocardiography -- 2.2.8 . Implementation of 3D -- 2.2.9 . Conclusions -- 2.3 . Contrast echocardiography [ 3-6 ] -- 2.3.1 . Ultrasound contrast agents -- 2.3.2 . Physics of microbubbles -- 2.3.3 . Administration -- 2.3.4 . Safety of contrast imaging -- 2.3.5 . Mechanical index and imaging modes -- 2.3.5.1 . High MI (0.4-0.6) in intermittent static imaging -- 2.3.5.2 . Low to intermediate MI (&lt -- 0.1-0.3) in real-time continuous imaging.

2.3.5.3 . Recommendations from the European Association of Cardiovascular Imaging (EACVI) [ 4 ] -- 2.3.6 . Contrast imaging modes -- 2.3.6.1 . LV opacification and endocardial delineation -- 2.3.6.2 . Tissue characterization -- 2.3.6.3 . Myocardial perfusion -- 2.3.7 . Stress echocardiography with contrast -- 2.3.7.1 . Coronary flow reserve-offline image processing -- 2.3.8 . EACVI recommendations for LV opacification contrast echocardiography [ 5 ] -- 2.3.9 . Conclusions -- 2.4 . Deformation imaging -- 2.4.1 . Tissue Doppler imaging -- 2.4.1.1 . Myocardial velocity imaging -- Colour Doppler -- Pulsed Doppler -- Limitations to velocity imaging -- Angle dependency -- Movement of sample volume -- Reverberations -- Tethering and cardiac translation -- Load dependency -- 2.4.1.2 . Displacement imaging -- 2.4.1.3 . Strain imaging -- Definition of strain and strain rate -- Limitations of strain and strain rate by TDI -- Signal noise -- Resolution -- Angle dependency -- Reverberations -- 2.4.1.4 . TDI in clinical use -- 2.4.2 . Speckle tracking echocardiography -- 2.4.2.1 . Differences of strain from STE versus strain from TDI -- 2.4.2.2 . Limitations of STE strain -- 2.4.2.3 . Three-dimensional (3D) STE -- 2.5 . Future trends -- 2.5.1 . Image quality -- 2.5.2 . Interventional echocardiography -- 2.5.2.1 . Intracardiac echocardiography -- 2.5.2.2 . Fusion imaging -- 2.5.3 . Myocardial perfusion by contrast echocardiography -- 2.5.4 . Molecular imaging by contrast echocardiography -- 2.5.5 . Clinical indices -- 2.5.6 . Tissue characterization -- 2.6 . Further reading -- 2.6.1 . Books -- 2.6.2 . Journals -- 2.6.3 . Web-pages -- References -- Chapter 3: Single-photon emission computed tomography -- 3.1 . Introduction -- 3.2 . Physical principles of SPECT -- 3.3 . Camera designs -- 3.4 . Tracers -- 3.5 . Image processing and reconstruction.

3.5.1 . Filtered back projection ( FBP) -- 3.5.2 . Iterative reconstruction -- 3.5.3 . Attenuation correction -- 3.5.4 . Gated SPECT -- 3.5.5 . List mode acquisition -- 3.6 . Low-dose SPECT -- 3.7 . Dynamic SPECT -- 3.8 . Hybrid imaging -- References -- Chapter 4: Positron emission tomography -- 4.1 . Introduction -- 4.2 . Principles of PET -- 4.2.1 . Data acquisition -- 4.2.2 . Attenuation -- 4.2.3 . Corrections -- 4.2.4 . Image quality and accuracy -- 4.3 . Clinical applications -- 4.3.1 . Myocardial perfusion -- 4.3.2 . Perfusion tracer characteristics -- 4.3.3 . Imaging protocols -- 4.3.4 . Tracer production and availability -- 4.3.5 . Image interpretation -- 4.3.6 . Substrate metabolism -- 4.3.7 . Hybrid PET / CT and PET / MRI imaging -- 4.4 . Conclusion -- References -- Chapter 5: Computed tomography -- 5.1 . Development of cardiac CT -- 5.2 . Technical principles and contemporary technology -- 5.2.1 . Computed tomography -- 5.2.1.1 . Roentgen generation -- 5.2.1.2 . Roentgen detection -- 5.2.1.3 . Dual-source CT -- 5.2.1.4 . Scan modes -- 5.2.2 . ECG -synchronized CT of the heart -- 5.2.2.1 . ECG -gated spiral CT -- 5.2.2.2 . ECG -triggered axial CT -- 5.2.2.3 . ECG -triggered stationary mode -- 5.2.2.4 . ECG -triggered high-pitch mode -- 5.2.3 . Image reconstruction -- 5.2.3.1 . Filtered back-projection -- 5.2.3.2 . Iterative reconstruction -- 5.2.3.3 . Selectable reconstruction algorithms -- 5.2.4 . Multienergy imaging -- 5.3 . CT performance, image quality parameters, and artifacts -- 5.3.1 . Temporal resolution and heart rhythm -- 5.3.2 . Spatial resolution -- 5.3.3 . Contrast resolution versus image noise -- 5.4 . Cardiac CT applications -- 5.4.1 . Coronary CT angiography -- 5.4.2 . Calcium scan -- 5.4.3 . Dynamic reconstructions for contractile function analysis -- 5.4.4 . Infarct imaging.

5.5 . Postprocessing, secondary reconstruction, and assisted interpretation -- 5.6 . Radiation and dose reduction -- 5.6.1 . Measurement and reporting of dose -- 5.6.2 . Radiation exposure and dose reductions in cardiac CT -- 5.7 . Estimating the hemodynamic significance of CAD -- 5.7.1 . Myocardial perfusion imaging -- 5.7.1.1 . Static MPI -- 5.7.1.2 . Dynamic MPI -- 5.7.2 . Coronary contrast opacification patterns -- 5.7.3 . CT -based fractional flow reserve -- 5.8 . Future perspectives -- References -- Chapter 6: Magnetic resonance imaging -- 6.1 . Introduction -- 6.2 . Basic principles of NMR -- 6.2.1 . Intrinsic MR contrast -- 6.2.2 . MR contrast agents -- 6.2.3 . Morphological imaging -- 6.2.4 . Cine imaging -- 6.2.5 . Perfusion imaging -- 6.2.6 . Flow imaging -- 6.2.7 . MR angiography -- 6.2.8 . Strengths and weaknesses of CMR -- 6.3 . Fast imaging -- 6.3.1 . Introduction: the challenge of imaging quickly -- 6.3.1.1 . Image space versus k -space -- 6.3.1.2 . The need for speed -- 6.3.1.3 . Technical restrictions ( SAR, SNR, and gradient stimulation issues) -- 6.3.2 . Real time versus segmentation -- 6.3.2.1 . The benefits of real-time imaging -- 6.3.2.2 . The benefit of collecting over multiple heartbeats -- 6.3.2.3 . Issues with real-time data -- 6.3.3 . Sampling the data faster -- 6.3.3.1 . Use of echo planar imaging ( EPI) and spiral methods -- 6.3.3.2 . Use of higher gradient performance -- 6.3.4 . Less is more: sampling smarter -- 6.3.4.1 . Use of parallel imaging techniques -- 6.3.4.2 . Use of time acceleration approaches -- 6.3.5 . Do we really need to go faster? -- 6.3.5.1 . Navigated methods -- 6.4 . Perfusion, blood-oxygen-level-dependent, and late gadolinium enhancement imaging -- 6.4.1 . Introduction -- 6.4.2 . Viability assessment by CMR -- 6.4.3 . Ischemia assessment by CMR -- 6.4.4 . Future directions.

6.5 . Quantitative mapping techniques -- 6.5.1 . T1 mapping -- 6.5.1.1 . Native T1 mapping -- 6.5.1.2 . Postcontrast T1 mapping -- 6.5.1.3 . Extracellular volume ( ECV) estimation and mapping -- 6.5.2 . T2 mapping -- 6.5.3 . T2 * mapping -- 6.5.4 . Future directions -- 6.6 . Three-dimensional time-resolved ( 4D) flow -- 6.6.1 . Introduction -- 6.6.2 . Flow in the aorta-clinical applications -- 6.6.3 . Flow in the heart-clinical applications -- 6.6.4 . Challenges and future directions -- 6.7 . Magnetic resonance spectroscopy -- 6.7.1 . Background -- 6.7.1.1 . Technical considerations (see [132] for a review) -- 6.7.2 . Clinical applications of MRS -- 6.7.2.1 . Ischemic heart disease -- 6.7.2.2 . Heart failure -- 6.7.2.3 . Other pathologies -- 6.7.3 . Future developments -- 6.8 . Hyperpolarization -- 6.8.1 . Introduction -- 6.8.2 . Hyperpolarization theory -- 6.8.3 . Methodological considerations -- 6.8.4 . Review of preclinical literature -- 6.8.5 . Future clinical perspectives -- 6.9 . Latest technical developments and future trends -- 6.10 . Sources of further information -- 6.10.1 . Selected reference texts -- 6.10.2 . Professional bodies -- 6.10.3 . MRI safety -- Acknowledgments -- References -- Part Two: Clinical applications of cardiac imaging -- Chapter 7: Noninvasive coronary angiography -- 7.1 . Introduction -- 7.2 . Coronary artery calcium -- 7.3 . CT coronary angiography -- 7.3.1 . Accuracy -- 7.3.2 . Plaque characterization -- 7.3.3 . Prognosis by CTCA -- 7.3.4 . Percutaneous coronary intervention -- 7.3.5 . Coronary artery bypass grafts -- 7.3.6 . Accuracy -- 7.3.7 . Prognosis -- 7.3.8 . Transluminal arterial gradient and corrected coronary opacification -- 7.3.9 . Fractional flow reserve with CT -- 7.3.10 . CT myocardial perfusion imaging -- 7.3.11 . Downstream resource utilization and cost-effectiveness.

7.3.12 . CTCA in the emergency department.

Advances in Cardiac Imaging presents the latest information on heart disease and heart failure, major causes of death among western populations. In addition, the text explores the financial burden to public healthcare trusts and the vast amount of research and funding being channeled into programs not only to prevent such diseases, but also to diagnose them in early stages. This book provides readers with a thorough overview of many advances in cardiac imaging. Chapters include technological developments in cardiac imaging and imaging applications in a clinical setting with regard to detecting various types of heart disease. Presents a thorough overview of cardiac imaging technology Addresses specific applications for a number of cardiac diseases and how they can improve diagnoses and treatment protocols Includes technological developments in cardiac imaging and imaging applications in a clinical setting.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.