ORPP logo
Image from Google Jackets

Fillers and Reinforcements for Advanced Nanocomposites.

By: Contributor(s): Material type: TextTextSeries: Woodhead Publishing Series in Composites Science and Engineering SeriesPublisher: San Diego : Elsevier Science & Technology, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (587 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780081000823
Subject(s): Genre/Form: Additional physical formats: Print version:: Fillers and Reinforcements for Advanced NanocompositesDDC classification:
  • 660.282
Online resources:
Contents:
Front Cover -- Related titles -- Fillers and Reinforcements for Advanced Nanocomposites -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Composites Science and Engineering -- Preface -- Part One - Nanocelluloses -- 1 - Properties and characterization of electrically conductive nanocellulose-based composite films -- 1.1 Introduction -- 1.2 Experimental details of preparation and characterization -- 1.3 Structures and properties of nanocellulose/PANI composites -- 1.4 Conclusions and future trends -- References -- 2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ... -- 2.1 Introduction -- 2.2 Experimental details of preparation and characterization -- 2.3 Results and discussion -- 2.4 Conclusions -- Acknowledgments -- References -- 3 - Advanced nanocomposites based on natural reinforcements -- 3.1 Introduction -- 3.2 Cellulose nanofiber extraction -- 3.3 The percolation phenomenon of cellulose -- 3.4 Chitin nanofibers -- 3.5 Conclusions and future trends -- References -- Part Two - Nanotubes -- 4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ... -- 4.1 Introduction -- 4.2 Material fabrication and characterization -- 4.3 Morphological observations -- 4.4 Reaction mechanism of nanocomposite fibers -- 4.5 Crystalline structures -- 4.6 Thermal properties -- 4.7 Intermolecular interactions -- 4.8 Conclusions -- References -- 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites -- 5.1 Introduction -- 5.2 Carbon nanotubes origins -- 5.3 The development of CNT hybrids -- 5.4 CNT/inorganic hybrid filler by CVD -- 5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites.
5.6 Synthesis and characterization of inorganic/CNT hybrid compounds -- 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites -- 5.8 Conclusions -- 5.9 Future trends -- Acknowledgments -- References -- Part Three - Nanoplatelets -- 6 - Development of biobased polymer/clay nanocomposites: a critical review -- 6.1 Introduction -- 6.2 Nanoclay fillers -- 6.3 Polymer/clay nanocomposites from biodegradable mixed sources -- 6.4 Conclusions and future trends -- Acknowledgments -- References -- 7 - Synthesis of graphene-based polymeric nanocomposites -- 7.1 Introduction -- 7.2 Functionalization of graphene -- 7.3 Methods of fabrication of graphene-based polymer composites -- 7.4 Properties of polymer/graphite/graphene nanocomposites -- 7.5 Conclusions and future trends -- Acknowledgments -- References -- 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites -- 8.1 Introduction -- 8.2 Materials and manufacturing -- 8.3 Characterization -- Acknowledgment -- References -- 9 - The processing of hierarchical nanocomposites -- 9.1 Introduction -- 9.2 Experimental details -- 9.3 Results and discussions -- 9.4 Conclusions -- Acknowledgment -- References -- 10 - Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites -- 10.1 Introduction -- 10.2 Experimental details -- 10.3 Results and discussion -- 10.4 Conclusions -- Acknowledgment -- References -- Part Four - Nanoparticles -- 11 - Compressive strength and durability of high-volume fly ash concrete reinforced with calcium carbonate nanoparticles -- 11.1 Introduction -- 11.2 Experimental details -- 11.3 Results and discussion -- 11.4 Conclusions -- References -- 12 - Amorphous carbon nanocomposites -- 12.1 Introduction -- 12.2 a-C nanoparticles -- 12.3 a-C foam nanocomposites.
12.4 a-C nano-thin film -- 12.5 a-C nanofibers -- 12.6 Conclusions -- References -- 13 - Silica/polyimide nanocomposite films -- 13.1 Introduction -- 13.2 Silica/PI composite film preparation -- 13.3 Structure characterization of silica/PI composite films -- 13.4 Optical properties of silica/PI composite films -- 13.5 Mechanical properties of silica/PI composite films -- 13.6 Thermal properties of silica/PI composite films -- 13.7 Conclusions -- References -- 14 - Challenges and recent developments on nanoparticle-reinforced metal matrix composites -- 14.1 Introduction -- 14.2 Vital issues in nanoparticle-reinforced MMCs -- 14.3 Fabrication of nanoparticle-reinforced MMCs -- 14.4 Strengthening mechanisms -- 14.5 Effect of nanoparticles on physical and mechanical properties of MMCs -- 14.6 Failure mechanisms -- 14.7 Concluding remarks and future aspects -- References -- Part Five - Filler applications -- 15 - Multifunctional nanocomposites reinforced with carbon nanopapers -- 15.1 Introduction -- 15.2 Fabrication methods -- 15.3 Properties and applications of CNPs -- 15.4 Summary and outlook -- References -- 16 - Fillers in advanced nanocomposites for energy harvesting -- 16.1 Introduction -- 16.2 Energy harvesting -- 16.3 Fillers -- 16.4 Polymer matrices -- 16.5 Nanocomposite preparation -- 16.6 Physical properties -- 16.7 Factors influencing energy harvesting -- 16.8 Applications -- 16.9 Conclusions -- Acknowledgment -- References -- 17 - Nanosilica-reinforced epoxy composites for marine applications -- 17.1 Introduction -- 17.2 Concentration effects -- 17.3 Particle size effects -- 17.4 Nanosilica-enhanced rubber/epoxy composites -- 17.5 Mechanisms for fracture toughness enhancement -- 17.6 Marine environment applications -- 17.7 Conclusions -- References.
18 - Monitoring the effect of micro-/nanofillers on curing-induced shrinkage in epoxy resins -- 18.1 Introduction -- 18.2 Experimental characterization -- 18.3 Conclusions and future trends -- Acknowledgments -- References -- 19 - Influence of nano-/microfillers on impact response of glass fiber-reinforced polymer composite -- 19.1 Introduction -- 19.2 Experimental procedure -- 19.3 Results and discussion -- 19.4 Conclusions -- References -- 20 - Tribological properties of polymer-based composites with nanoscaled fillers -- 20.1 Introduction -- 20.2 PTFE-based composites with nanoscaled fillers -- 20.3 Applications -- 20.4 Summary -- References -- 21 - Organic/inorganic nanocomposite hydrogels -- 21.1 Introduction -- 21.2 Polymer/zero-dimensional inorganic gels -- 21.3 Polymer/one-dimensional inorganic (carbon nanotube) gels -- 21.4 Polymer/two-dimensional inorganic (laponite and graphene) gels -- 21.5 Conclusions and outlook -- Acknowledgments -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Related titles -- Fillers and Reinforcements for Advanced Nanocomposites -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Composites Science and Engineering -- Preface -- Part One - Nanocelluloses -- 1 - Properties and characterization of electrically conductive nanocellulose-based composite films -- 1.1 Introduction -- 1.2 Experimental details of preparation and characterization -- 1.3 Structures and properties of nanocellulose/PANI composites -- 1.4 Conclusions and future trends -- References -- 2 - Comparing the effects of microcrystalline cellulose and cellulose nanowhiskers extracted from oil palm empty fruit bunc ... -- 2.1 Introduction -- 2.2 Experimental details of preparation and characterization -- 2.3 Results and discussion -- 2.4 Conclusions -- Acknowledgments -- References -- 3 - Advanced nanocomposites based on natural reinforcements -- 3.1 Introduction -- 3.2 Cellulose nanofiber extraction -- 3.3 The percolation phenomenon of cellulose -- 3.4 Chitin nanofibers -- 3.5 Conclusions and future trends -- References -- Part Two - Nanotubes -- 4 - Electrospun poly(lactic acid) (PLA): poly(ε-caprolactone) (PCL)/halloysite nanotube (HNT) composite fibers: synthesis a ... -- 4.1 Introduction -- 4.2 Material fabrication and characterization -- 4.3 Morphological observations -- 4.4 Reaction mechanism of nanocomposite fibers -- 4.5 Crystalline structures -- 4.6 Thermal properties -- 4.7 Intermolecular interactions -- 4.8 Conclusions -- References -- 5 - Production of hybrid inorganic/carbon nanotube fillers via chemical vapor deposition for advanced polymer nanocomposites -- 5.1 Introduction -- 5.2 Carbon nanotubes origins -- 5.3 The development of CNT hybrids -- 5.4 CNT/inorganic hybrid filler by CVD -- 5.5 Advantages of using CNT/inorganic hybrid in polymer nanocomposites.

5.6 Synthesis and characterization of inorganic/CNT hybrid compounds -- 5.7 Effect of hybrid and physically mixed MWCNT and alumina in phenolic/MWCNT-alumina composites -- 5.8 Conclusions -- 5.9 Future trends -- Acknowledgments -- References -- Part Three - Nanoplatelets -- 6 - Development of biobased polymer/clay nanocomposites: a critical review -- 6.1 Introduction -- 6.2 Nanoclay fillers -- 6.3 Polymer/clay nanocomposites from biodegradable mixed sources -- 6.4 Conclusions and future trends -- Acknowledgments -- References -- 7 - Synthesis of graphene-based polymeric nanocomposites -- 7.1 Introduction -- 7.2 Functionalization of graphene -- 7.3 Methods of fabrication of graphene-based polymer composites -- 7.4 Properties of polymer/graphite/graphene nanocomposites -- 7.5 Conclusions and future trends -- Acknowledgments -- References -- 8 - Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites -- 8.1 Introduction -- 8.2 Materials and manufacturing -- 8.3 Characterization -- Acknowledgment -- References -- 9 - The processing of hierarchical nanocomposites -- 9.1 Introduction -- 9.2 Experimental details -- 9.3 Results and discussions -- 9.4 Conclusions -- Acknowledgment -- References -- 10 - Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites -- 10.1 Introduction -- 10.2 Experimental details -- 10.3 Results and discussion -- 10.4 Conclusions -- Acknowledgment -- References -- Part Four - Nanoparticles -- 11 - Compressive strength and durability of high-volume fly ash concrete reinforced with calcium carbonate nanoparticles -- 11.1 Introduction -- 11.2 Experimental details -- 11.3 Results and discussion -- 11.4 Conclusions -- References -- 12 - Amorphous carbon nanocomposites -- 12.1 Introduction -- 12.2 a-C nanoparticles -- 12.3 a-C foam nanocomposites.

12.4 a-C nano-thin film -- 12.5 a-C nanofibers -- 12.6 Conclusions -- References -- 13 - Silica/polyimide nanocomposite films -- 13.1 Introduction -- 13.2 Silica/PI composite film preparation -- 13.3 Structure characterization of silica/PI composite films -- 13.4 Optical properties of silica/PI composite films -- 13.5 Mechanical properties of silica/PI composite films -- 13.6 Thermal properties of silica/PI composite films -- 13.7 Conclusions -- References -- 14 - Challenges and recent developments on nanoparticle-reinforced metal matrix composites -- 14.1 Introduction -- 14.2 Vital issues in nanoparticle-reinforced MMCs -- 14.3 Fabrication of nanoparticle-reinforced MMCs -- 14.4 Strengthening mechanisms -- 14.5 Effect of nanoparticles on physical and mechanical properties of MMCs -- 14.6 Failure mechanisms -- 14.7 Concluding remarks and future aspects -- References -- Part Five - Filler applications -- 15 - Multifunctional nanocomposites reinforced with carbon nanopapers -- 15.1 Introduction -- 15.2 Fabrication methods -- 15.3 Properties and applications of CNPs -- 15.4 Summary and outlook -- References -- 16 - Fillers in advanced nanocomposites for energy harvesting -- 16.1 Introduction -- 16.2 Energy harvesting -- 16.3 Fillers -- 16.4 Polymer matrices -- 16.5 Nanocomposite preparation -- 16.6 Physical properties -- 16.7 Factors influencing energy harvesting -- 16.8 Applications -- 16.9 Conclusions -- Acknowledgment -- References -- 17 - Nanosilica-reinforced epoxy composites for marine applications -- 17.1 Introduction -- 17.2 Concentration effects -- 17.3 Particle size effects -- 17.4 Nanosilica-enhanced rubber/epoxy composites -- 17.5 Mechanisms for fracture toughness enhancement -- 17.6 Marine environment applications -- 17.7 Conclusions -- References.

18 - Monitoring the effect of micro-/nanofillers on curing-induced shrinkage in epoxy resins -- 18.1 Introduction -- 18.2 Experimental characterization -- 18.3 Conclusions and future trends -- Acknowledgments -- References -- 19 - Influence of nano-/microfillers on impact response of glass fiber-reinforced polymer composite -- 19.1 Introduction -- 19.2 Experimental procedure -- 19.3 Results and discussion -- 19.4 Conclusions -- References -- 20 - Tribological properties of polymer-based composites with nanoscaled fillers -- 20.1 Introduction -- 20.2 PTFE-based composites with nanoscaled fillers -- 20.3 Applications -- 20.4 Summary -- References -- 21 - Organic/inorganic nanocomposite hydrogels -- 21.1 Introduction -- 21.2 Polymer/zero-dimensional inorganic gels -- 21.3 Polymer/one-dimensional inorganic (carbon nanotube) gels -- 21.4 Polymer/two-dimensional inorganic (laponite and graphene) gels -- 21.5 Conclusions and outlook -- Acknowledgments -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.