ORPP logo
Image from Google Jackets

Brain Targeted Drug Delivery Systems : A Focus on Nanotechnology and Nanoparticulates.

By: Contributor(s): Material type: TextTextPublisher: San Diego : Elsevier Science & Technology, 2018Copyright date: ©2019Edition: 1st edDescription: 1 online resource (502 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128140024
Subject(s): Genre/Form: Additional physical formats: Print version:: Brain Targeted Drug Delivery SystemsLOC classification:
  • RS199.5 .B735 2019
Online resources:
Contents:
Front Cover -- Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Chapter 1: Introduction and overview -- 1. Is it possible to deliver drugs to brain? -- 2. What's the major concerns of brain-targeted DDS? -- 3. Conclusion -- Part I: Physiology and principles for brain targeting drug delivery -- Chapter 2: Anatomy and physiology of blood-brain barrier -- 1. Introduction -- 2. Concept of blood-brain barrier -- 3. Neurovascular unit -- 3.1. Occludin -- 3.2. Claudin -- 3.3. Adhesion junctions -- 3.4. Junctional adhesion molecules -- 3.5. Accessory proteins -- 3.6. Pericytes -- 3.7. Neurons -- 3.8. Extracellular matrix -- 4. Role of astrocytes -- 5. Transportation across blood-brain barrier -- 6. Types of transport systems at blood-brain barrier -- 6.1. Amino acid transport -- 6.2. Hexose transport system -- 6.3. Monocarboxylate transporter system -- 6.4. Organic anion transporter family -- 6.5. Organic cation transporter (OCT and OCTN) family -- 6.6. Transport of nucleosides -- 6.7. Transport of peptides -- 6.8. Transport of macromolecules -- 6.9. Transport of ions -- 6.10. Transcytosis of macromolecules -- 7. Conclusions -- References -- Chapter 3: Recent progress in blood-brain barrier transportation research -- 1. Introduction -- 2. Overview of the transport mechanisms at the BBB -- 2.1. Carrier-mediated transcytosis -- 2.1.1. Glucose transporters -- 2.1.2. Large neutral amino acid transporter 1 -- 2.1.3. Monocarboxylate transporter 1 -- 2.2. Receptor-mediated transport -- 2.2.1. Transferrin receptor -- 2.2.2. Insulin receptor -- 2.2.3. Low-density lipoprotein receptor-related protein -- 2.3. Adsorptive-mediated transcytosis -- 3. Strategies for improving CNS delivery of therapeutics -- 3.1. Enhanced paracellular transport.
3.2. Improving physicochemical properties of CNS-active drugs -- 3.3. Drug modification with targeting moieties -- 3.4. Nanocarrier-based drug delivery -- 3.5. Cell-based drug delivery -- 4. Future perspectives -- References -- Chapter 4: In vitro and in vivo models of BBB to evaluate brain targeting drug delivery -- 1. Introduction -- 2. The neurovascular unit -- 2.1. Endothelial cells -- 2.2. Pericytes -- 2.3. Astrocytes -- 2.4. Molecular structure of the junction -- 2.4.1. Tight junctions -- 2.4.2. Adherens junction -- 3. Movement through the blood-brain barrier -- 3.1. Passive diffusion -- 3.2. Carrier-mediated transport -- 3.3. Active efflux pumps -- 3.4. Transcytosis -- 3.5. Cell-mediated transport -- 4. In vitro models of BBB for assessing drug delivery -- 4.1. Methods for measuring permeability -- 4.1.1. TEER (trans-endothelial electric resistance) measurement -- 4.1.2. FITC-dextran and sodium fluorescein -- 4.1.3. Lucifer yellow -- 4.1.4. Evans blue dye -- 4.1.5. Horseradish peroxidase (HRP) -- 4.1.6. Mannitol/sucrose/inulin (radiolabeled) -- 4.2. In vitro models -- 4.2.1. Noncell-based (synthetic) in vitro models -- 4.2.1.1. Immobilized artificial membrane (IAM) chromatography -- 4.2.1.2. Parallel artificial membrane permeability assay -- 4.2.2. Cell-based in vitro models -- 4.2.2.1. Primary mono-cell cultures -- 4.2.2.2. Cocultures -- 4.2.2.3. Triple cultures -- 4.2.2.4. Microfluidic design BBB model -- 5. In vivo models of BBB -- 5.1. Rodent model -- 5.2. Zebrafish model -- 5.3. Nonhuman primate models -- 5.4. Drosophila model -- 5.5. Canine model -- 5.6. Techniques for studying extent of drug delivery to CNS -- 5.6.1. Invasive techniques -- 5.6.1.1. In situ brain perfusion -- 5.6.1.2. Intravenous injection technique -- 5.6.1.3. Microdialysis -- 5.6.1.4. Brain uptake index (BUI) -- 5.6.1.5. Cerebrospinal fluid (CSF) sampling.
5.6.1.6. Blood/plasma (B/P) ratio determination -- 5.6.1.7. Quantitative autoradiography -- 5.6.2. Noninvasive imaging techniques -- 6. Conclusion and perspective -- References -- Further reading -- Part II: Nanoparticles-based brain targeting delivery strategies -- Chapter 5: Receptor-mediated transportation through BBB -- 1. Introduction -- 2. Insulin receptor -- 3. Transferrin receptor -- 4. Low-density lipoprotein receptor and low-density lipoprotein receptor-related proteins -- 5. Nicotinic acetylcholine receptors -- 6. Lactoferrin receptor -- 7. Scavenger receptor class B type 1 -- 8. Leptin receptor -- 9. Diphtheria toxin receptor -- 10. Single domain llama antibody receptor -- 11. Concluding remarks -- References -- Further reading -- Chapter 6: Carrier-mediated transportation through BBB -- 1. Introduction -- 2. CMT systems at the BBB -- 3. Nano drug delivery systems -- 4. CMT of nano drug delivery systems across the BBB -- 4.1. Hexose transport system -- 4.1.1. GLUT1-targeted nanoparticles for brain-targeted drug delivery -- 4.1.2. GLUT1-targeted liposomes for brain-targeted drug delivery -- 4.2. Amino acid transporters -- 4.2.1. Neutral amino acid transporters -- 4.2.2. Cationic amino acid transporters -- 4.2.3. Efflux amino acid transporters -- 4.3. Peptide transporters -- 4.4. Monocarboxylic acid transport systems -- 4.5. Amine transport systems -- 4.6. Carnitine transporter -- 5. Conclusion and perspective -- References -- Chapter 7: Brain drug delivery by adsorption-mediated transcytosis -- 1. Introduction -- 2. Mechanism of AMT -- 3. Adsorptive-mediated brain drug delivery systems -- 3.1. Cationic albumin-mediated brain drug delivery system -- 3.1.1. Brain delivery of cationic albumin -- 3.1.2. Brain delivery of cationic albumin-drug conjugates -- 3.1.3. Brain delivery of CBSA-conjugated nanoparticle delivery systems.
3.2. Basic proteins-mediated brain drug delivery systems -- 3.2.1. Brain delivery of basic proteins -- 3.2.2. Brain delivery of basic protein-drug conjugates -- 3.2.3. Brain delivery of basic protein-conjugated nanoparticle drug delivery system -- 3.3. CPPs-mediated brain drug delivery system -- 3.3.1. Brain delivery of CPPs -- 3.3.2. Brain delivery of CPPs-drug conjugates -- 3.3.3. Brain delivery of CPPs-conjugated nanoparticle drug delivery system -- 4. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 8: Efflux pump inhibition to enhance brain targeting delivery -- 1. Introduction -- 2. Efflux pump -- 3. Modulating the efflux pump by nanoparticles to improve brain delivery -- 3.1. Liposomes -- 3.2. Solid lipid nanoparticles -- 3.3. Polymeric nanoparticles -- 3.4. Polymeric micelles -- 4. Conclusion and perspectives -- References -- Chapter 9: Physically open BBB -- 1. Introduction -- 2. Small molecule compounds -- 2.1. Hyperosmolar mannitol -- 2.2. Borneol -- 2.3. Lexiscan -- 2.4. Alkylglycerols -- 3. Macromolecular compound to open BBB -- 3.1. Bradykinin and bradykinin analog -- 3.2. C-type natriuretic peptide -- 3.3. Lipopolysaccharide -- 4. Physical methods to open BBB -- 4.1. Focused ultrasound -- 4.2. Electromagnetic field exposure -- 4.3. Photodynamic therapy -- 4.4. Photochemical internalization -- 5. Conclusion and perspectives -- References -- Chapter 10: Nanoparticle systems for nose-to-brain delivery -- 1. Introduction -- 2. Anatomy of nasal cavity -- 3. Pathways of direct nose-to-brain transport -- 3.1. Olfactory nerve pathways -- 3.2. Trigeminal nerve pathways -- 3.3. Pathways involving the cerebrospinal fluid -- 4. Nanoparticle systems for nose-to-brain delivery -- 4.1. Chitosan-based nanoparticles -- 4.2. Polyester-based nanoparticles -- 4.3. Solid lipid nanoparticles -- 4.4. Liposomes and cationic liposomes.
4.5. Nanoemulsions and micelles -- 4.6. Nanocomplexes -- 5. Problems to be resolved -- 5.1. Industrialization of nano-sized formulations -- 5.2. Reproducibility of brain delivery after intranasal administration -- 5.3. Whether nanoparticles are transported intact to the brain and how are they cleared away? -- 5.4. Are the nanoparticles toxic to the brain? -- 6. Future prospective -- References -- Chapter 11: Brain local delivery strategy -- 1. Introduction -- 1.1. Local drug delivery -- 1.1.1. Requirements -- 1.1.2. Applications -- 1.1.2.1. Stent therapy for arterial diseases -- 1.1.2.2. Antimicrobial delivery for periodontitis -- 1.1.2.3. Ocular implants -- 1.1.2.4. Dental implants -- 1.1.2.5. Orthopedic implants -- 1.1.2.6. Skin diseases -- 1.1.2.7. Brain delivery -- 2. Local drug delivery to brain -- 2.1. Intracerebral injection -- 2.2. Intrathecal and intraventricular administration -- 2.2.1. Bolus administration -- 2.2.2. Infusion using implantable pumps -- 2.3. Convection-enhanced delivery -- 2.3.1. Factors influencing optimization of CED -- 2.3.2. Applications -- 2.3.3. Limitations -- 2.3.4. Advances in CED -- 2.4. Implantable drug delivery systems -- 2.4.1. Implantable microchips -- 2.4.1.1. Design of the system -- 2.4.1.2. Applications -- 2.4.2. Implantable polymeric systems -- 2.4.2.1. Polymeric wafers -- 2.4.2.2. Implantable colloidal carriers -- 2.4.2.3. Hydrogels -- 3. Marketed products -- 3.1. Safety concerns -- 4. Clinical trials -- 5. Conclusion and future perspective -- References -- Further reading -- Part III: Nanoparticles-based brain targeting delivery for CNS disorder management -- Chapter 12: Glioma targeted delivery systems -- 1. Passive targeting delivery systems -- 2. Active targeting delivery systems -- 2.1. Receptor-mediated glioma targeted drug delivery -- 2.1.1. With BBB overcoming.
2.1.1.1. Single ligand-modified targeting systems.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Chapter 1: Introduction and overview -- 1. Is it possible to deliver drugs to brain? -- 2. What's the major concerns of brain-targeted DDS? -- 3. Conclusion -- Part I: Physiology and principles for brain targeting drug delivery -- Chapter 2: Anatomy and physiology of blood-brain barrier -- 1. Introduction -- 2. Concept of blood-brain barrier -- 3. Neurovascular unit -- 3.1. Occludin -- 3.2. Claudin -- 3.3. Adhesion junctions -- 3.4. Junctional adhesion molecules -- 3.5. Accessory proteins -- 3.6. Pericytes -- 3.7. Neurons -- 3.8. Extracellular matrix -- 4. Role of astrocytes -- 5. Transportation across blood-brain barrier -- 6. Types of transport systems at blood-brain barrier -- 6.1. Amino acid transport -- 6.2. Hexose transport system -- 6.3. Monocarboxylate transporter system -- 6.4. Organic anion transporter family -- 6.5. Organic cation transporter (OCT and OCTN) family -- 6.6. Transport of nucleosides -- 6.7. Transport of peptides -- 6.8. Transport of macromolecules -- 6.9. Transport of ions -- 6.10. Transcytosis of macromolecules -- 7. Conclusions -- References -- Chapter 3: Recent progress in blood-brain barrier transportation research -- 1. Introduction -- 2. Overview of the transport mechanisms at the BBB -- 2.1. Carrier-mediated transcytosis -- 2.1.1. Glucose transporters -- 2.1.2. Large neutral amino acid transporter 1 -- 2.1.3. Monocarboxylate transporter 1 -- 2.2. Receptor-mediated transport -- 2.2.1. Transferrin receptor -- 2.2.2. Insulin receptor -- 2.2.3. Low-density lipoprotein receptor-related protein -- 2.3. Adsorptive-mediated transcytosis -- 3. Strategies for improving CNS delivery of therapeutics -- 3.1. Enhanced paracellular transport.

3.2. Improving physicochemical properties of CNS-active drugs -- 3.3. Drug modification with targeting moieties -- 3.4. Nanocarrier-based drug delivery -- 3.5. Cell-based drug delivery -- 4. Future perspectives -- References -- Chapter 4: In vitro and in vivo models of BBB to evaluate brain targeting drug delivery -- 1. Introduction -- 2. The neurovascular unit -- 2.1. Endothelial cells -- 2.2. Pericytes -- 2.3. Astrocytes -- 2.4. Molecular structure of the junction -- 2.4.1. Tight junctions -- 2.4.2. Adherens junction -- 3. Movement through the blood-brain barrier -- 3.1. Passive diffusion -- 3.2. Carrier-mediated transport -- 3.3. Active efflux pumps -- 3.4. Transcytosis -- 3.5. Cell-mediated transport -- 4. In vitro models of BBB for assessing drug delivery -- 4.1. Methods for measuring permeability -- 4.1.1. TEER (trans-endothelial electric resistance) measurement -- 4.1.2. FITC-dextran and sodium fluorescein -- 4.1.3. Lucifer yellow -- 4.1.4. Evans blue dye -- 4.1.5. Horseradish peroxidase (HRP) -- 4.1.6. Mannitol/sucrose/inulin (radiolabeled) -- 4.2. In vitro models -- 4.2.1. Noncell-based (synthetic) in vitro models -- 4.2.1.1. Immobilized artificial membrane (IAM) chromatography -- 4.2.1.2. Parallel artificial membrane permeability assay -- 4.2.2. Cell-based in vitro models -- 4.2.2.1. Primary mono-cell cultures -- 4.2.2.2. Cocultures -- 4.2.2.3. Triple cultures -- 4.2.2.4. Microfluidic design BBB model -- 5. In vivo models of BBB -- 5.1. Rodent model -- 5.2. Zebrafish model -- 5.3. Nonhuman primate models -- 5.4. Drosophila model -- 5.5. Canine model -- 5.6. Techniques for studying extent of drug delivery to CNS -- 5.6.1. Invasive techniques -- 5.6.1.1. In situ brain perfusion -- 5.6.1.2. Intravenous injection technique -- 5.6.1.3. Microdialysis -- 5.6.1.4. Brain uptake index (BUI) -- 5.6.1.5. Cerebrospinal fluid (CSF) sampling.

5.6.1.6. Blood/plasma (B/P) ratio determination -- 5.6.1.7. Quantitative autoradiography -- 5.6.2. Noninvasive imaging techniques -- 6. Conclusion and perspective -- References -- Further reading -- Part II: Nanoparticles-based brain targeting delivery strategies -- Chapter 5: Receptor-mediated transportation through BBB -- 1. Introduction -- 2. Insulin receptor -- 3. Transferrin receptor -- 4. Low-density lipoprotein receptor and low-density lipoprotein receptor-related proteins -- 5. Nicotinic acetylcholine receptors -- 6. Lactoferrin receptor -- 7. Scavenger receptor class B type 1 -- 8. Leptin receptor -- 9. Diphtheria toxin receptor -- 10. Single domain llama antibody receptor -- 11. Concluding remarks -- References -- Further reading -- Chapter 6: Carrier-mediated transportation through BBB -- 1. Introduction -- 2. CMT systems at the BBB -- 3. Nano drug delivery systems -- 4. CMT of nano drug delivery systems across the BBB -- 4.1. Hexose transport system -- 4.1.1. GLUT1-targeted nanoparticles for brain-targeted drug delivery -- 4.1.2. GLUT1-targeted liposomes for brain-targeted drug delivery -- 4.2. Amino acid transporters -- 4.2.1. Neutral amino acid transporters -- 4.2.2. Cationic amino acid transporters -- 4.2.3. Efflux amino acid transporters -- 4.3. Peptide transporters -- 4.4. Monocarboxylic acid transport systems -- 4.5. Amine transport systems -- 4.6. Carnitine transporter -- 5. Conclusion and perspective -- References -- Chapter 7: Brain drug delivery by adsorption-mediated transcytosis -- 1. Introduction -- 2. Mechanism of AMT -- 3. Adsorptive-mediated brain drug delivery systems -- 3.1. Cationic albumin-mediated brain drug delivery system -- 3.1.1. Brain delivery of cationic albumin -- 3.1.2. Brain delivery of cationic albumin-drug conjugates -- 3.1.3. Brain delivery of CBSA-conjugated nanoparticle delivery systems.

3.2. Basic proteins-mediated brain drug delivery systems -- 3.2.1. Brain delivery of basic proteins -- 3.2.2. Brain delivery of basic protein-drug conjugates -- 3.2.3. Brain delivery of basic protein-conjugated nanoparticle drug delivery system -- 3.3. CPPs-mediated brain drug delivery system -- 3.3.1. Brain delivery of CPPs -- 3.3.2. Brain delivery of CPPs-drug conjugates -- 3.3.3. Brain delivery of CPPs-conjugated nanoparticle drug delivery system -- 4. Conclusion and perspectives -- Acknowledgments -- References -- Chapter 8: Efflux pump inhibition to enhance brain targeting delivery -- 1. Introduction -- 2. Efflux pump -- 3. Modulating the efflux pump by nanoparticles to improve brain delivery -- 3.1. Liposomes -- 3.2. Solid lipid nanoparticles -- 3.3. Polymeric nanoparticles -- 3.4. Polymeric micelles -- 4. Conclusion and perspectives -- References -- Chapter 9: Physically open BBB -- 1. Introduction -- 2. Small molecule compounds -- 2.1. Hyperosmolar mannitol -- 2.2. Borneol -- 2.3. Lexiscan -- 2.4. Alkylglycerols -- 3. Macromolecular compound to open BBB -- 3.1. Bradykinin and bradykinin analog -- 3.2. C-type natriuretic peptide -- 3.3. Lipopolysaccharide -- 4. Physical methods to open BBB -- 4.1. Focused ultrasound -- 4.2. Electromagnetic field exposure -- 4.3. Photodynamic therapy -- 4.4. Photochemical internalization -- 5. Conclusion and perspectives -- References -- Chapter 10: Nanoparticle systems for nose-to-brain delivery -- 1. Introduction -- 2. Anatomy of nasal cavity -- 3. Pathways of direct nose-to-brain transport -- 3.1. Olfactory nerve pathways -- 3.2. Trigeminal nerve pathways -- 3.3. Pathways involving the cerebrospinal fluid -- 4. Nanoparticle systems for nose-to-brain delivery -- 4.1. Chitosan-based nanoparticles -- 4.2. Polyester-based nanoparticles -- 4.3. Solid lipid nanoparticles -- 4.4. Liposomes and cationic liposomes.

4.5. Nanoemulsions and micelles -- 4.6. Nanocomplexes -- 5. Problems to be resolved -- 5.1. Industrialization of nano-sized formulations -- 5.2. Reproducibility of brain delivery after intranasal administration -- 5.3. Whether nanoparticles are transported intact to the brain and how are they cleared away? -- 5.4. Are the nanoparticles toxic to the brain? -- 6. Future prospective -- References -- Chapter 11: Brain local delivery strategy -- 1. Introduction -- 1.1. Local drug delivery -- 1.1.1. Requirements -- 1.1.2. Applications -- 1.1.2.1. Stent therapy for arterial diseases -- 1.1.2.2. Antimicrobial delivery for periodontitis -- 1.1.2.3. Ocular implants -- 1.1.2.4. Dental implants -- 1.1.2.5. Orthopedic implants -- 1.1.2.6. Skin diseases -- 1.1.2.7. Brain delivery -- 2. Local drug delivery to brain -- 2.1. Intracerebral injection -- 2.2. Intrathecal and intraventricular administration -- 2.2.1. Bolus administration -- 2.2.2. Infusion using implantable pumps -- 2.3. Convection-enhanced delivery -- 2.3.1. Factors influencing optimization of CED -- 2.3.2. Applications -- 2.3.3. Limitations -- 2.3.4. Advances in CED -- 2.4. Implantable drug delivery systems -- 2.4.1. Implantable microchips -- 2.4.1.1. Design of the system -- 2.4.1.2. Applications -- 2.4.2. Implantable polymeric systems -- 2.4.2.1. Polymeric wafers -- 2.4.2.2. Implantable colloidal carriers -- 2.4.2.3. Hydrogels -- 3. Marketed products -- 3.1. Safety concerns -- 4. Clinical trials -- 5. Conclusion and future perspective -- References -- Further reading -- Part III: Nanoparticles-based brain targeting delivery for CNS disorder management -- Chapter 12: Glioma targeted delivery systems -- 1. Passive targeting delivery systems -- 2. Active targeting delivery systems -- 2.1. Receptor-mediated glioma targeted drug delivery -- 2.1.1. With BBB overcoming.

2.1.1.1. Single ligand-modified targeting systems.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.