ORPP logo
Image from Google Jackets

Machinability of Fibre-Reinforced Plastics.

By: Contributor(s): Material type: TextTextSeries: Advanced Composites SeriesPublisher: Berlin/Boston : De Gruyter, Inc., 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (210 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783110292251
Subject(s): Genre/Form: Additional physical formats: Print version:: Machinability of Fibre-Reinforced PlasticsDDC classification:
  • 620.1923
LOC classification:
  • TA418.9.C6 .B384 2015
Online resources:
Contents:
Intro -- Preface -- Contents -- List of contributing authors -- 1 Laser material machining of CFRP - an option for damage-free and flexible CFRP processing? -- 1.1 Introduction -- 1.2 State of the art of machining of CFRP -- 1.2.1 Cutting CFRP -- 1.2.2 Surface pre-treatment of CFRP -- 1.2.3 Shape cutting of CFRP -- 1.3 Laser material interaction -- 1.4 Laser material machining of CFRP -- 1.4.1 Laser cutting of CFRP -- 1.4.2 Laser surface pre-treatment of CFRP -- 1.4.3 Laser ablation of CFRP -- 1.5 Conclusion -- 2 Rotary ultrasonic machining of CFRP composites -- 2.1 Introduction -- 2.1.1 CFRP composites -- 2.1.2 Rotary ultrasonic machining -- 2.1.3 Purpose of this chapter -- 2.2 Rotary ultrasonic machining system set-up -- 2.2.1 Ultrasonic power supply -- 2.2.2 Ultrasonic transducer -- 2.2.3 Ultrasonic amplitude transformer (horn) and tool holder -- 2.2.4 Cutting tool -- 2.3 Input variables and output variables in RUM -- 2.3.1 Machining variables -- 2.3.2 Cutting tool variables and cooling variables -- 2.3.3 Workpiece properties -- 2.3.4 Output variables -- 2.4 Effects of input variables on output variables -- 2.4.1 Effects on cutting force -- 2.4.2 Effects on torque -- 2.4.3 Effects on cutting temperature -- 2.4.4 Effects on edge quality -- 2.4.5 Effects on surface roughness -- 2.4.6 Effects on burning of machined surface -- 2.4.7 Effects on tool wear -- 2.4.8 Effects on MRR -- 2.4.9 Effects on power consumption -- 2.4.10 Effects on feasible regions -- 2.5 Summary -- 3 High-speed robotic trimming of CFRP -- 3.1 Introduction -- 3.2 Machinability of CFRP -- 3.2.1 Evaluation of the cutting force -- 3.2.2 Assessment of the machinability of CFRP under high-speed robotic trimming -- 3.2.3 Cutting forces for robotic trimming experiments -- 3.2.4 Quality of robotic trimmed specimens -- 3.2.5 Surface quality -- 3.3 Conclusion.
4 Numerical modeling of LFRP machining -- 4.1 Introduction -- 4.2 Orthogonal cutting -- 4.2.1 2D modeling -- 4.2.2 3D modeling -- 4.2.3 Thermal effects -- 4.3 Drilling -- 4.3.1 Comparison between simplified and complete drilling models -- 4.3.2 Thermal model of drilling -- 4.4 Conclusions -- 5 Delamination in composite materials: measurement, assessment and prediction -- 5.1 Introduction -- 5.2 Mechanisms of delamination -- 5.2.1 Peel-up delamination -- 5.2.2 Push-out delamination -- 5.3 Measurement of delamination -- 5.3.1 Visual methods -- 5.3.2 Image processing -- 5.3.3 Acoustic emission -- 5.3.4 Scanning acoustic microscopy (SAM) -- 5.3.5 Ultrasonic C-scan -- 5.3.6 Radiography -- 5.3.7 X-ray computerized tomography -- 5.3.8 Shadow moiré interferometry -- 5.4 Assessment of delamination -- 5.4.1 Delamination factor/conventional delamination factor -- 5.4.2 Delamination size -- 5.4.3 Two-dimensional delamination factor (Fd) -- 5.4.4 Damage ratio -- 5.4.5 Delamination factor -- 5.4.6 Adjusted delamination factor -- 5.4.7 Equivalent delamination factor -- 5.4.8 Refined delamination factor (FDR) -- 5.4.9 Shape circularity ( f) -- 5.4.10 Minimum delamination factor -- 5.5 Delamination in milling -- 5.6 Numerical prediction of delamination -- 5.6.1 Regression analysis -- 5.6.2 Artificial neural network (ANN) -- 5.6.3 FE simulation methods -- 5.7 Summary -- 6 Drilling of high impact polystyrene composites materials -- 6.1 Introduction -- 6.2 Materials and Manufacturing -- 6.3 Experimental work -- 6.4 Response surface methodology-based modeling of process parameters -- 6.5 Results and Discussion -- 6.6 Conclusions -- 7 A review on investigations in drilling of fiber reinforced plastics -- 7.1 Introduction -- 7.1.1 Delamination and delamination mechanism -- 7.1.2 Fabrication of polymer matrix composites -- 7.2 Drilling process.
7.2.1 Delamination assessment -- 7.2.2 Effect of various machining parameters on delamination -- 7.3 Role of digital image processing in delamination assessment -- 7.4 Summary -- Index.
Summary: Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- List of contributing authors -- 1 Laser material machining of CFRP - an option for damage-free and flexible CFRP processing? -- 1.1 Introduction -- 1.2 State of the art of machining of CFRP -- 1.2.1 Cutting CFRP -- 1.2.2 Surface pre-treatment of CFRP -- 1.2.3 Shape cutting of CFRP -- 1.3 Laser material interaction -- 1.4 Laser material machining of CFRP -- 1.4.1 Laser cutting of CFRP -- 1.4.2 Laser surface pre-treatment of CFRP -- 1.4.3 Laser ablation of CFRP -- 1.5 Conclusion -- 2 Rotary ultrasonic machining of CFRP composites -- 2.1 Introduction -- 2.1.1 CFRP composites -- 2.1.2 Rotary ultrasonic machining -- 2.1.3 Purpose of this chapter -- 2.2 Rotary ultrasonic machining system set-up -- 2.2.1 Ultrasonic power supply -- 2.2.2 Ultrasonic transducer -- 2.2.3 Ultrasonic amplitude transformer (horn) and tool holder -- 2.2.4 Cutting tool -- 2.3 Input variables and output variables in RUM -- 2.3.1 Machining variables -- 2.3.2 Cutting tool variables and cooling variables -- 2.3.3 Workpiece properties -- 2.3.4 Output variables -- 2.4 Effects of input variables on output variables -- 2.4.1 Effects on cutting force -- 2.4.2 Effects on torque -- 2.4.3 Effects on cutting temperature -- 2.4.4 Effects on edge quality -- 2.4.5 Effects on surface roughness -- 2.4.6 Effects on burning of machined surface -- 2.4.7 Effects on tool wear -- 2.4.8 Effects on MRR -- 2.4.9 Effects on power consumption -- 2.4.10 Effects on feasible regions -- 2.5 Summary -- 3 High-speed robotic trimming of CFRP -- 3.1 Introduction -- 3.2 Machinability of CFRP -- 3.2.1 Evaluation of the cutting force -- 3.2.2 Assessment of the machinability of CFRP under high-speed robotic trimming -- 3.2.3 Cutting forces for robotic trimming experiments -- 3.2.4 Quality of robotic trimmed specimens -- 3.2.5 Surface quality -- 3.3 Conclusion.

4 Numerical modeling of LFRP machining -- 4.1 Introduction -- 4.2 Orthogonal cutting -- 4.2.1 2D modeling -- 4.2.2 3D modeling -- 4.2.3 Thermal effects -- 4.3 Drilling -- 4.3.1 Comparison between simplified and complete drilling models -- 4.3.2 Thermal model of drilling -- 4.4 Conclusions -- 5 Delamination in composite materials: measurement, assessment and prediction -- 5.1 Introduction -- 5.2 Mechanisms of delamination -- 5.2.1 Peel-up delamination -- 5.2.2 Push-out delamination -- 5.3 Measurement of delamination -- 5.3.1 Visual methods -- 5.3.2 Image processing -- 5.3.3 Acoustic emission -- 5.3.4 Scanning acoustic microscopy (SAM) -- 5.3.5 Ultrasonic C-scan -- 5.3.6 Radiography -- 5.3.7 X-ray computerized tomography -- 5.3.8 Shadow moiré interferometry -- 5.4 Assessment of delamination -- 5.4.1 Delamination factor/conventional delamination factor -- 5.4.2 Delamination size -- 5.4.3 Two-dimensional delamination factor (Fd) -- 5.4.4 Damage ratio -- 5.4.5 Delamination factor -- 5.4.6 Adjusted delamination factor -- 5.4.7 Equivalent delamination factor -- 5.4.8 Refined delamination factor (FDR) -- 5.4.9 Shape circularity ( f) -- 5.4.10 Minimum delamination factor -- 5.5 Delamination in milling -- 5.6 Numerical prediction of delamination -- 5.6.1 Regression analysis -- 5.6.2 Artificial neural network (ANN) -- 5.6.3 FE simulation methods -- 5.7 Summary -- 6 Drilling of high impact polystyrene composites materials -- 6.1 Introduction -- 6.2 Materials and Manufacturing -- 6.3 Experimental work -- 6.4 Response surface methodology-based modeling of process parameters -- 6.5 Results and Discussion -- 6.6 Conclusions -- 7 A review on investigations in drilling of fiber reinforced plastics -- 7.1 Introduction -- 7.1.1 Delamination and delamination mechanism -- 7.1.2 Fabrication of polymer matrix composites -- 7.2 Drilling process.

7.2.1 Delamination assessment -- 7.2.2 Effect of various machining parameters on delamination -- 7.3 Role of digital image processing in delamination assessment -- 7.4 Summary -- Index.

Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.