The Leptonic Magnetic Monopole - Theory and Experiments.
Material type:
- text
- computer
- online resource
- 9780128025918
- 621.367
- TK7800
Front Cover -- Advances in IMAGING AND ELECTRON PHYSICS -- Advances in IMAGING AND ELECTRON PHYSICS -- Copyright -- Advances in IMAGING AND ELECTRON PHYSICSThe Leptonic Magnetic Monopole Theory and ExperimentsGeorges LochakFondation Louis ... -- Contents -- Preface -- Foreword: The Past and Future of Magnetic Monopoles -- 1. A Brief History of Electricity and Magnetism -- 2. The Fathers of the Magnetic Monopole -- 2.1 Maxwell (1873) -- 2.2 Pierre Curie (1894) -- 2.3 Poincaré (1896) -- 2.4 Dirac (1931) -- 3. Some Introductory Words About the Leptonic Monopole -- 4. Characteristics of the Theory -- Future Contributions -- Theory of the Leptonic Monopole -- 1. Theoretical Background -- 1. Theories of Poincaré, Dirac, and Curie -- 1.1 The Birkeland-Poincaré effect -- 1.2 P. A. M. Dirac -- 1.3 Pierre Curie -- 2. A Wave Equation for a Leptonic Monopole, Dirac Representation -- 2.1 The Two Gauge Invariances of Dirac's Equation -- 2.2 The Equation of the Electron -- 2.3 The Second Gauge, the Second Covariant Derivative, and the Equation for a Magnetic Monopole -- 2.4 The Dirac Tensors and the "Magic Angle" A of Yvon-Takabayasi (For the Electric and the Magnetic Case) -- 2.5 P, T, C Symmetries. Properties of the Angle A (Not to be Confused with the Lorentz Potential A) -- 3. The Wave Equation in the Weyl Representation. The Interaction Between a Monopole and an Electric Coulombian Pole. Dirac For ... -- 3.1 The Weyl Representation -- 3.2 Chiral Currents -- 3.3 A Remark About the Dirac Theory of the Electron -- 3.4 The Interaction Between a Monopole and an Electric Coulombian Pole (Angular Functions) -- 3.5 The Interaction Between a Monopole and an Electric Coulombian Pole (Radial Functions) -- 3.6 Some General Remarks -- 3.7 The Geometrical Optics Approximation. Back to the Poincaré Equation.
3.8 The Problem of the Link Between a Leptonic Magnetic Monopole, a Neutrino, and Weak Interactions -- 3.9 Some Questions about the Dirac Formula and Our Formula -- 4. Nonlinear Equations. Torsion and Magnetism -- 4.1 A Nonlinear Massive Monopole -- 4.2 The Nonlinear Monopole in a Coulombian Electrical Field -- 4.3 Chiral Gauge and Twisted Space. Torsion and Magnetism -- 5. The Dirac Equation on the Light Cone. Majorana Electrons and Magnetic Monopoles -- 5.1 Introduction. How the Majorana Field Appears in the Theory of a Magnetic Monopole -- 5.2 The Electric Case: Lagrangian Representation and Gauge Invariance of the Majorana Field -- 5.3 Two-Component Electric Equations. Symmetry and Conservation Laws -- 5.4 The Chiral State of the Electron in an Electric Coulomb Field -- 5.5 Conclusions from the Physical Behavior of a Chiral State of a Dirac Electron (A Majorana Electron), in an Electric Coulombi ... -- 5.6 The Geometrical Optics Approximation of the States of the Majorana Electron -- 5.7 How Could One Observe a Majorana Electron? -- 5.8 The Equation in the Magnetic Case -- 5.10 Another Possible Equation: The Gauge Invariance Problem -- 5.11 Geometrical Optic Approximation -- Appendix A -- Appendix B -- 6. A New Electromagnetism with Four Fundamental Photons: Electric, Magnetic, with Spin 1 and Spin 0 -- 6.1 Theory of Light -- 6.1.1 Theory of Light and Wave Mechanics: A Historical Summary -- 6.1.2 De Broglie's Method of Fusion -- 6.1.3 De Broglie's Equations of Photons -- 6.1.4 Introduction of a Square-Matrix Wave Function -- 6.1.4 The Equations of the "Electric Photon" (Γ Matrix). -- 6.1.5 The Equations of the Magnetic Photon (Λ Matrix). -- 6.1.6 The Aharonov-Bohm Effect -- 6.1.7 The Effect -- 6.1.8 The Magnetic Potential of an Infinitely Thin and Infinitely Long Solenoid -- 6.1.9 The Theory of the Effect.
6.1.10 Conclusions on the Theory of Light -- 6.2 Hamiltonian, Lagrangian, Current, Energy, Spin -- 6.2.1 The Lagrangian -- 6.2.2 The Current Density Vector -- 6.2.3 The Photon Spin -- 6.2.7 Relativistic Noninvariance of the Decomposition Spin 1-Spin 0 -- 6.2.8 The Problem of a Massive Photon -- 6.2.9 Gauge Invariance -- 6.2.10 Vacuum Dispersion -- 6.2.11 Relativity -- 6.2.12 Blackbody Radiation -- 6.2.13 A Remark on Structural Stability -- 6.3 Theory of Particles with Maximum Spin n -- 6.3.1 Generalization of the Theory -- 6.3.2 Generalized Method of Fusion -- 6.3.3 "Quasi-Maxwellian" Form -- 6.3.4 The Density of Quadri-current -- 6.3.5 The Energy Density -- 6.3.6 The "Corpuscular" Tensor -- 6.3.7 The "type M" Tensors -- 6.3.8 Spin -- 6.4 Theory of Particles with Maximum Spin 2 -- 6.4.1 The Particles of Maximum Spin 2. Graviton -- 6.4.2 Why are Gravitation and Electromagnetism Linked? -- 6.4.3 The Tensorial Equations of a Particle of Maximum Spin 2 -- 6.5 Quantum (Linear) Theory Gravitation -- 6.5.1 The Particle of Maximum Spin 2. Graviton -- 6.5.2 Comparison with Other Theories -- 6.5.3 The "Proca Equation" -- 6.5.4 The Bargmann-Wigner Equation -- 7. P, T, and C Symmetries, the Solutions with Negative Energy, and the Representation of Antiparticles in Spinor Equations -- 7.1 Introduction -- 7.2 The Spatial Symmetries of the Electromagnetic Quantities -- 7.3 The Time Symmetry of the Electromagnetic Field -- 7.4 P, T, and C Variance of the Electromagnetic Field -- 7.5 Transforming the Potentials -- 7.6 P, T, and C Invariance in the Dirac Equation -- 7.7 P, T, and C Invariance in the Monopole Equation -- 7.8 P, T, and C Transformation Laws for Tensor Quantities -- 7.9 Nonlinearity and Quantum Mechanics: Are They Compatible? -- 7.10 Nonlinear Spinorial Equations and Their Symmetries -- 8. A Catalytic Nuclear Fusion Arising from Weak Interaction.
8.1 Main Ideas -- 8.2 Introduction -- 8.3 A Possible Catalyst for Nuclear Fusion -- 8.3.1 Some Remarks -- 8.4 A Test-Experiment -- 9. Conclusion -- References -- Further Reading -- Symmetry Breaking by Electric Discharges in Water and Formation of Lochak's Light Magnetic Monopoles in an Extended Standar ... -- Introduction -- Conventions and Explanatory Notes -- 1. Elements of the Spinor Field Quantum Theory -- 1.1 Algebraic Representation of the Spinor Field -- 1.2 Nonperturbative Self-Regularization -- 1.3 Symmetries and Symmetry Breaking -- 1.3.1 Conserved Symmetries -- 1.3.2 Discrete Transformations -- 1.3.3 Antisymmetrization -- 1.3.4 Symmetry Breaking and Parafermi States -- 1.4 Weak Mappings in Functional Space -- 1.4.1 Chain Rule Mappings -- 2. Composite Particle States Above the Ground State -- 2.1 Relativistic Equations for Composite Bosons -- 2.2 PCT- and CP-Invariant Fermion Propagators -- 2.3 Spinor Field Version of Lochak's Photon Theory -- 2.4 Propagator for Symmetry Breaking Experiments -- 2.5 Summary -- 2.6 Parafermi Electric and Magnetic Boson States -- 2.7 Physical Effect of Symmetry Breaking -- 2.8 Relativistic Equations for Composite Leptons -- 2.9 Eigenstates of Energy and Angular Momentum -- 2.10 Group Theory of Fermions for Full Symmetry -- 2.11 Parafermi Boson and Lepton States -- 2.12 Composite Particle States for High Velocities -- 3. Dynamics of the Extended Standard Model -- 3.1 Introductory Comments -- 3.2 Theory with Composite Electroweak Bosons -- 3.3 Effective Canonical Equations of Motion -- 3.4 A Consistency Test of the Boson Theory -- 3.5 Fields for CP and Isospin Symmetry Breaking -- 4. Magnetic Monopoles and Discharges -- 4.1 Supersonic Spark Discharges in Water -- 4.2 Processes Connected with Neutrino Emission -- 4.3 How Magnetic Monopoles are Linked to Discharges.
4.4 Changes and Invariants of the Coupling Term -- 4.5 Regularization and Probability Conservation -- 4.6 Mapping with Inclusion of Charged Lepton States -- 4.7 Discharge Effects on Leptonic Doublets -- 4.8 The Role of Ordinary Neutrinos -- Appendix A -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.