ORPP logo
Image from Google Jackets

Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases.

By: Contributor(s): Material type: TextTextPublisher: San Diego : Elsevier Science & Technology, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (341 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780128014714
Subject(s): Genre/Form: Additional physical formats: Print version:: Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious DiseasesLOC classification:
  • R857.N34
Online resources:
Contents:
Front Cover -- Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Gold and Silver Nanoparticles for Diagnostics of Infection -- 1.1 Nanotechnology and Infection -- 1.2 Gold and Silver NPs for Molecular Diagnostics -- 1.2.1 Biomarkers -- 1.3 Nanodiagnostics for Nucleic Acids -- 1.3.1 Homogeneous Colorimetric Assays -- 1.3.1.1 Unmodified NPs -- 1.3.1.2 Cross-Linking -- 1.3.1.3 Noncross-Linking -- 1.3.2 Heterogeneous Detection -- 1.3.2.1 Microarrays -- 1.3.2.2 Lateral Flow Assays -- 1.3.3 Electrochemical Assays -- 1.3.4 Fluorescence Assays -- 1.3.5 Raman and SERS -- 1.3.6 Other -- 1.4 Aptamers and Antibodies -- 1.4.1 Colorimetric -- 1.4.2 Electrochemical -- 1.4.3 Lateral Flow Assays -- 1.5 iPCR and Other Methods -- 1.6 Conclusion -- References -- 2 Antimicrobial Models in Nanotechnology: From the Selection to Application in the Control and Treatment of Infectious Diseases -- 2.1 Introduction -- 2.2 Antimicrobial Susceptibility Testing Methods of NMs -- 2.2.1 Broth Dilution Test -- 2.2.2 Spectrophotometric Measurement -- 2.2.3 Cell Counting -- 2.2.4 Colorimetric and Fluorescent Assays -- 2.2.5 In Vitro Infection Animal Model -- 2.2.6 Biocidal Testing -- 2.2.7 Antibiofilm Activity -- 2.2.8 Quorum-Sensing Inhibitors -- 2.2.9 Microbial Membrane Lysis -- 2.2.10 Microbial Oxidative Stress -- 2.2.11 Antipersister and Antidormancy Bacterial Cells -- 2.2.12 Microbial Fitness -- 2.3 Nanotoxicology -- 2.3.1 Nano-Genotoxicology -- 2.3.2 Cytotoxicity -- 2.3.3 Immunotoxicity -- 2.3.4 In Vitro Skin Irritation -- 2.3.5 Caenorhabditis elegans Toxicity Model -- 2.3.6 Nanotoxicity in Embryonic and Adult Zebrafish -- 2.3.7 Bioluminescence-Based Nanotoxicity Test -- 2.4 In Vitro Pharmacokinetics/Pharmacodynamic Models -- 2.4.1 Particokinetics -- 2.4.2 Caco-2 Permeability.
2.4.3 Hollow Fiber System -- 2.5 Conclusions -- References -- 3 Silver Nanoparticles for the Control of Vector-Borne Infections -- 3.1 Introduction -- 3.2 Louse-Borne Infections and Activity of AgNPs Against Lice -- 3.3 Mosquito-Borne Infections and Activity of AgNPs Against Mosquitoes -- 3.4 Tick-Borne Infections and Activity of AgNPs Against Ticks -- 3.5 Flies, Their Role in Transmission and Spread of Infections, and Activity of AgNPs Against Flies -- 3.6 Conclusions and Future Prospects -- References -- 4 Magnetite Nanostructures: Trends in Anti-Infectious Therapy -- 4.1 Introduction -- 4.2 Nanoparticles with Biomedical Applications -- 4.2.1 Design of Tailored Magnetic Nanoparticles with Applications in Microbiology -- 4.2.2 Magnetite Nanoparticles Used to Control Microorganisms Attachment and Biofilm Formation -- 4.2.3 The Biocompatibility of Magnetite Nanoparticles -- 4.2.3.1 Biocompatibility Evaluation of Magnetite Nanoparticles at the Cellular Level -- 4.2.3.2 Biocompatibility Evaluation of Magnetite Nanoparticles at Biochemical and Molecular Level -- 4.2.3.3 Biocompatibility Evaluation of Magnetite Nanoparticles Using Animal Models -- 4.3 Conclusions -- References -- 5 Photodynamic Therapy of Infectious Disease Mediated by Functionalized Fullerenes -- 5.1 Introduction -- 5.2 Antibiotic Resistance and the Need for PDT -- 5.3 PDT Mechanism of Action -- 5.3.1 Use as an Antimicrobial Treatment -- 5.4 Applications -- 5.4.1 Antiviral -- 5.4.1.1 Papillomatosis -- 5.4.1.2 Blood Purification -- 5.4.2 Dentistry -- 5.4.3 Dermatology -- 5.4.3.1 Acne -- 5.4.4 Wounds -- 5.4.5 MRSA -- 5.5 The Ideal PS -- 5.5.1 Limitations -- 5.5.1.1 Penetration -- 5.5.1.2 Nonspecificity -- 5.5.1.3 Side Effects -- 5.5.1.3.1 Damage to Surrounding Tissue -- 5.5.1.3.2 Resistant Pathogens and the Dangers of Developing a Resistance -- 5.5.2 Optimization.
5.5.2.1 Getting the PS to the Cell -- 5.5.2.2 Getting the Light into the Tissue -- 5.5.2.2.1 Interstitial Fibers -- 5.5.2.2.2 Changing Tissue Optical Properties -- 5.5.2.2.3 Extending Absorption Spectra -- 5.5.2.2.4 Nonlinear Excitation -- 5.6 PDT Using Fullerenes -- 5.6.1 Introduction to Fullerenes -- 5.6.1.1 Photochemistry -- 5.6.1.2 Functionalization -- 5.6.1.3 Formulation -- 5.7 In Vitro Studies -- 5.7.1 Viruses -- 5.7.2 Bacteria -- 5.7.3 Fungi -- 5.8 In Vivo Studies -- 5.9 Conclusions -- References -- 6 Nonconventional Routes to Silver Nanoantimicrobials: Technological Issues, Bioactivity, and Applications -- 6.1 Introduction -- 6.2 Ion Beam Sputtering Deposition of AgNP-Based Coatings -- 6.3 Photo-Assisted Deposition of AgNP-Based Coatings -- 6.4 Electrochemical Methods for Nanomaterial Synthesis -- 6.4.1 Fundamentals of the Electrocrystallization Process -- 6.4.2 Electrochemical Synthesis of Colloidal AgNPs -- 6.5 Overview of the Most Widely Accepted Bioactivity Mechanisms -- 6.6 Overview of the Most Promising Applications -- 6.7 Conclusions and Future Perspectives -- References -- 7 Application of Nanomaterials in Prevention of Bone and Joint Infections -- 7.1 Introduction -- 7.2 Orthopedic Implants and Infections -- 7.3 Local Delivery of Antimicrobials -- 7.4 Antimicrobial Implant Coatings -- 7.5 Implant Coating with Nano-Silver -- 7.6 Conclusion and Future Perspectives -- References -- 8 The Potential of Metal Nanoparticles for Inhibition of Bacterial Biofilms -- 8.1 Introduction -- 8.2 Diseases Caused by Bacterial Biofilms -- 8.2.1 Pseudomonas aeruginosa Biofilms -- 8.2.2 Staphylococcus aureus Biofilms -- 8.2.3 Biofilms Formed by E. coli and Other Pathogens of Gastrointesinal Tract -- 8.3 Biofilm Resistance to Conventional Antibiotics and New Alternative Strategies to Combat Bacterial Biofilms -- 8.4 Antibiofilm Activity of Metal NPs.
8.4.1 Silver NPs -- 8.4.2 Zinc NPs -- 8.4.3 Gold NPs -- 8.5 Conclusions -- References -- 9 Tackling the Problem of Tuberculosis by Nanotechnology: Disease Diagnosis and Drug Delivery -- 9.1 Introduction -- 9.1.1 Disease Severity -- 9.1.2 Distribution of TB -- 9.1.3 Aim of the Chapter -- 9.2 The Present Scenario of Antibiotics Used Against TB -- 9.2.1 The Problem of Drug Resistance in TB Strains -- 9.2.2 New Drugs for MDR-TB -- 9.2.3 Side Effects of Chemotherapy -- 9.3 Nanotechnology as a Novel Approach in Drug Discovery -- 9.3.1 Nanotechnology-Based Drug Delivery for TB Treatment -- 9.3.1.1 Polymeric Nano-Carrier: Dendrimers -- 9.3.1.2 Cyclodextrins -- 9.3.1.3 Polymeric Micelles -- 9.3.1.4 Nanosuspensions -- 9.3.1.5 Nanoemulsions -- 9.3.1.6 Niosomes -- 9.3.1.7 Polymeric and Nonpolymeric Nanoparticles -- 9.3.1.8 Liposomes -- 9.4 Nano-Based DNA Vaccines for TB -- 9.5 Role of Nanobiosensors in Diagnostics of TB -- 9.6 Conclusion and Future Perspectives -- References -- 10 Influence of Physicochemical Properties of Nanomaterials on Their Antibacterial Applications -- 10.1 Introduction -- 10.2 Physicochemical Properties of Nanomaterials and Their Influence on Antibacterial Performance -- 10.2.1 Influence of Nanomaterial Size, Surface Area, Composition, and Aggregation on Their Antibacterial Performance -- 10.2.2 Influence of Nanomaterial Shape on Their Antibacterial Performance -- 10.2.3 Influence of Surface Chemistry of Nanomaterials and Their Exterior Corona on Antibacterial Performance -- 10.2.4 Influence of Nanomaterial Dissolution into Metal Ions on Their Antibacterial Performance -- 10.2.5 Influence of ROS Generation Ability of Photosensitive Nanomaterials on Their Antibacterial Performance -- 10.2.6 Influence of Other Often Neglected Physicochemical Parameters of Nanomaterials on Their Antibacterial Performance -- 10.3 Conclusions -- References.
11 Nanocarriers Against Bacterial Biofilms: Current Status and Future Perspectives -- 11.1 Introduction -- 11.2 Biofilms-Health and Economic Burdens -- 11.3 Biofilms-Definition, Composition, and Development -- 11.4 Challenges in Antimicrobial Treatment of Biofilms -- 11.5 Current Approaches for Efficient Anti-Infective Therapy -- 11.5.1 Nanocarrier-Mediated Delivery of Antimicrobials -- 11.5.1.1 Liposomes -- 11.5.1.2 Polymeric NPs -- 11.5.1.3 Solid Lipid NPs -- 11.5.1.4 Lipid-Polymer Hybrid -- 11.5.1.5 Dendrimers -- 11.5.2 Antimicrobial Activity of Metal/Inorganic NPs -- 11.5.3 Nanocarriers for Improved APDT -- 11.5.4 Nano-Based Delivery of Novel Anti-Infectives -- 11.6 Biofilm Targeting -- 11.7 Experimental Evaluation of Nanocarrier-Biofilm Interaction -- 11.7.1 Microscopical Investigation -- 11.7.2 Confocal Microscopy -- 11.7.3 Flow Cytometry -- 11.7.4 Fluorescence Correlation Spectroscopy -- 11.7.5 Fluorescence Resonance Energy Transfer -- 11.7.6 Single Particle Tracking -- 11.7.7 Multiple Particle Tracking -- 11.7.8 Optical Tweezers -- 11.8 Pharmaceutical Application of Nanoantimicrobials -- 11.8.1 Topical -- 11.8.2 Oral -- 11.8.3 Pulmonary -- 11.8.4 Urinary Infections -- 11.9 Clinical Studies and Marketed Products -- 11.10 Conclusion and Future Perspectives -- References -- 12 Nanomaterials for Antibacterial Textiles -- 12.1 Introduction -- 12.2 Textile Fibers -- 12.3 Preparatory Processes -- 12.4 Coloration Processes -- 12.5 Environmental Concerns -- 12.6 Antibacterial Function Finish -- 12.6.1 Main Objectives -- 12.6.2 Main Requirements -- 12.6.3 Application Methods or Techniques -- 12.6.4 Chemistry and Mode of Action of Current Antibacterial Agents () -- 12.7 Antibacterial Textiles Using Nanomaterials -- 12.7.1 Greener Nanomaterial Production -- 12.7.1.1 Eco-Friendly Chemical Reduction -- 12.7.1.1.1 Reducing Sugars -- 12.7.1.1.2 Biopolymers.
12.7.1.1.3 Na-Citrate and Tollens Reagent.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Gold and Silver Nanoparticles for Diagnostics of Infection -- 1.1 Nanotechnology and Infection -- 1.2 Gold and Silver NPs for Molecular Diagnostics -- 1.2.1 Biomarkers -- 1.3 Nanodiagnostics for Nucleic Acids -- 1.3.1 Homogeneous Colorimetric Assays -- 1.3.1.1 Unmodified NPs -- 1.3.1.2 Cross-Linking -- 1.3.1.3 Noncross-Linking -- 1.3.2 Heterogeneous Detection -- 1.3.2.1 Microarrays -- 1.3.2.2 Lateral Flow Assays -- 1.3.3 Electrochemical Assays -- 1.3.4 Fluorescence Assays -- 1.3.5 Raman and SERS -- 1.3.6 Other -- 1.4 Aptamers and Antibodies -- 1.4.1 Colorimetric -- 1.4.2 Electrochemical -- 1.4.3 Lateral Flow Assays -- 1.5 iPCR and Other Methods -- 1.6 Conclusion -- References -- 2 Antimicrobial Models in Nanotechnology: From the Selection to Application in the Control and Treatment of Infectious Diseases -- 2.1 Introduction -- 2.2 Antimicrobial Susceptibility Testing Methods of NMs -- 2.2.1 Broth Dilution Test -- 2.2.2 Spectrophotometric Measurement -- 2.2.3 Cell Counting -- 2.2.4 Colorimetric and Fluorescent Assays -- 2.2.5 In Vitro Infection Animal Model -- 2.2.6 Biocidal Testing -- 2.2.7 Antibiofilm Activity -- 2.2.8 Quorum-Sensing Inhibitors -- 2.2.9 Microbial Membrane Lysis -- 2.2.10 Microbial Oxidative Stress -- 2.2.11 Antipersister and Antidormancy Bacterial Cells -- 2.2.12 Microbial Fitness -- 2.3 Nanotoxicology -- 2.3.1 Nano-Genotoxicology -- 2.3.2 Cytotoxicity -- 2.3.3 Immunotoxicity -- 2.3.4 In Vitro Skin Irritation -- 2.3.5 Caenorhabditis elegans Toxicity Model -- 2.3.6 Nanotoxicity in Embryonic and Adult Zebrafish -- 2.3.7 Bioluminescence-Based Nanotoxicity Test -- 2.4 In Vitro Pharmacokinetics/Pharmacodynamic Models -- 2.4.1 Particokinetics -- 2.4.2 Caco-2 Permeability.

2.4.3 Hollow Fiber System -- 2.5 Conclusions -- References -- 3 Silver Nanoparticles for the Control of Vector-Borne Infections -- 3.1 Introduction -- 3.2 Louse-Borne Infections and Activity of AgNPs Against Lice -- 3.3 Mosquito-Borne Infections and Activity of AgNPs Against Mosquitoes -- 3.4 Tick-Borne Infections and Activity of AgNPs Against Ticks -- 3.5 Flies, Their Role in Transmission and Spread of Infections, and Activity of AgNPs Against Flies -- 3.6 Conclusions and Future Prospects -- References -- 4 Magnetite Nanostructures: Trends in Anti-Infectious Therapy -- 4.1 Introduction -- 4.2 Nanoparticles with Biomedical Applications -- 4.2.1 Design of Tailored Magnetic Nanoparticles with Applications in Microbiology -- 4.2.2 Magnetite Nanoparticles Used to Control Microorganisms Attachment and Biofilm Formation -- 4.2.3 The Biocompatibility of Magnetite Nanoparticles -- 4.2.3.1 Biocompatibility Evaluation of Magnetite Nanoparticles at the Cellular Level -- 4.2.3.2 Biocompatibility Evaluation of Magnetite Nanoparticles at Biochemical and Molecular Level -- 4.2.3.3 Biocompatibility Evaluation of Magnetite Nanoparticles Using Animal Models -- 4.3 Conclusions -- References -- 5 Photodynamic Therapy of Infectious Disease Mediated by Functionalized Fullerenes -- 5.1 Introduction -- 5.2 Antibiotic Resistance and the Need for PDT -- 5.3 PDT Mechanism of Action -- 5.3.1 Use as an Antimicrobial Treatment -- 5.4 Applications -- 5.4.1 Antiviral -- 5.4.1.1 Papillomatosis -- 5.4.1.2 Blood Purification -- 5.4.2 Dentistry -- 5.4.3 Dermatology -- 5.4.3.1 Acne -- 5.4.4 Wounds -- 5.4.5 MRSA -- 5.5 The Ideal PS -- 5.5.1 Limitations -- 5.5.1.1 Penetration -- 5.5.1.2 Nonspecificity -- 5.5.1.3 Side Effects -- 5.5.1.3.1 Damage to Surrounding Tissue -- 5.5.1.3.2 Resistant Pathogens and the Dangers of Developing a Resistance -- 5.5.2 Optimization.

5.5.2.1 Getting the PS to the Cell -- 5.5.2.2 Getting the Light into the Tissue -- 5.5.2.2.1 Interstitial Fibers -- 5.5.2.2.2 Changing Tissue Optical Properties -- 5.5.2.2.3 Extending Absorption Spectra -- 5.5.2.2.4 Nonlinear Excitation -- 5.6 PDT Using Fullerenes -- 5.6.1 Introduction to Fullerenes -- 5.6.1.1 Photochemistry -- 5.6.1.2 Functionalization -- 5.6.1.3 Formulation -- 5.7 In Vitro Studies -- 5.7.1 Viruses -- 5.7.2 Bacteria -- 5.7.3 Fungi -- 5.8 In Vivo Studies -- 5.9 Conclusions -- References -- 6 Nonconventional Routes to Silver Nanoantimicrobials: Technological Issues, Bioactivity, and Applications -- 6.1 Introduction -- 6.2 Ion Beam Sputtering Deposition of AgNP-Based Coatings -- 6.3 Photo-Assisted Deposition of AgNP-Based Coatings -- 6.4 Electrochemical Methods for Nanomaterial Synthesis -- 6.4.1 Fundamentals of the Electrocrystallization Process -- 6.4.2 Electrochemical Synthesis of Colloidal AgNPs -- 6.5 Overview of the Most Widely Accepted Bioactivity Mechanisms -- 6.6 Overview of the Most Promising Applications -- 6.7 Conclusions and Future Perspectives -- References -- 7 Application of Nanomaterials in Prevention of Bone and Joint Infections -- 7.1 Introduction -- 7.2 Orthopedic Implants and Infections -- 7.3 Local Delivery of Antimicrobials -- 7.4 Antimicrobial Implant Coatings -- 7.5 Implant Coating with Nano-Silver -- 7.6 Conclusion and Future Perspectives -- References -- 8 The Potential of Metal Nanoparticles for Inhibition of Bacterial Biofilms -- 8.1 Introduction -- 8.2 Diseases Caused by Bacterial Biofilms -- 8.2.1 Pseudomonas aeruginosa Biofilms -- 8.2.2 Staphylococcus aureus Biofilms -- 8.2.3 Biofilms Formed by E. coli and Other Pathogens of Gastrointesinal Tract -- 8.3 Biofilm Resistance to Conventional Antibiotics and New Alternative Strategies to Combat Bacterial Biofilms -- 8.4 Antibiofilm Activity of Metal NPs.

8.4.1 Silver NPs -- 8.4.2 Zinc NPs -- 8.4.3 Gold NPs -- 8.5 Conclusions -- References -- 9 Tackling the Problem of Tuberculosis by Nanotechnology: Disease Diagnosis and Drug Delivery -- 9.1 Introduction -- 9.1.1 Disease Severity -- 9.1.2 Distribution of TB -- 9.1.3 Aim of the Chapter -- 9.2 The Present Scenario of Antibiotics Used Against TB -- 9.2.1 The Problem of Drug Resistance in TB Strains -- 9.2.2 New Drugs for MDR-TB -- 9.2.3 Side Effects of Chemotherapy -- 9.3 Nanotechnology as a Novel Approach in Drug Discovery -- 9.3.1 Nanotechnology-Based Drug Delivery for TB Treatment -- 9.3.1.1 Polymeric Nano-Carrier: Dendrimers -- 9.3.1.2 Cyclodextrins -- 9.3.1.3 Polymeric Micelles -- 9.3.1.4 Nanosuspensions -- 9.3.1.5 Nanoemulsions -- 9.3.1.6 Niosomes -- 9.3.1.7 Polymeric and Nonpolymeric Nanoparticles -- 9.3.1.8 Liposomes -- 9.4 Nano-Based DNA Vaccines for TB -- 9.5 Role of Nanobiosensors in Diagnostics of TB -- 9.6 Conclusion and Future Perspectives -- References -- 10 Influence of Physicochemical Properties of Nanomaterials on Their Antibacterial Applications -- 10.1 Introduction -- 10.2 Physicochemical Properties of Nanomaterials and Their Influence on Antibacterial Performance -- 10.2.1 Influence of Nanomaterial Size, Surface Area, Composition, and Aggregation on Their Antibacterial Performance -- 10.2.2 Influence of Nanomaterial Shape on Their Antibacterial Performance -- 10.2.3 Influence of Surface Chemistry of Nanomaterials and Their Exterior Corona on Antibacterial Performance -- 10.2.4 Influence of Nanomaterial Dissolution into Metal Ions on Their Antibacterial Performance -- 10.2.5 Influence of ROS Generation Ability of Photosensitive Nanomaterials on Their Antibacterial Performance -- 10.2.6 Influence of Other Often Neglected Physicochemical Parameters of Nanomaterials on Their Antibacterial Performance -- 10.3 Conclusions -- References.

11 Nanocarriers Against Bacterial Biofilms: Current Status and Future Perspectives -- 11.1 Introduction -- 11.2 Biofilms-Health and Economic Burdens -- 11.3 Biofilms-Definition, Composition, and Development -- 11.4 Challenges in Antimicrobial Treatment of Biofilms -- 11.5 Current Approaches for Efficient Anti-Infective Therapy -- 11.5.1 Nanocarrier-Mediated Delivery of Antimicrobials -- 11.5.1.1 Liposomes -- 11.5.1.2 Polymeric NPs -- 11.5.1.3 Solid Lipid NPs -- 11.5.1.4 Lipid-Polymer Hybrid -- 11.5.1.5 Dendrimers -- 11.5.2 Antimicrobial Activity of Metal/Inorganic NPs -- 11.5.3 Nanocarriers for Improved APDT -- 11.5.4 Nano-Based Delivery of Novel Anti-Infectives -- 11.6 Biofilm Targeting -- 11.7 Experimental Evaluation of Nanocarrier-Biofilm Interaction -- 11.7.1 Microscopical Investigation -- 11.7.2 Confocal Microscopy -- 11.7.3 Flow Cytometry -- 11.7.4 Fluorescence Correlation Spectroscopy -- 11.7.5 Fluorescence Resonance Energy Transfer -- 11.7.6 Single Particle Tracking -- 11.7.7 Multiple Particle Tracking -- 11.7.8 Optical Tweezers -- 11.8 Pharmaceutical Application of Nanoantimicrobials -- 11.8.1 Topical -- 11.8.2 Oral -- 11.8.3 Pulmonary -- 11.8.4 Urinary Infections -- 11.9 Clinical Studies and Marketed Products -- 11.10 Conclusion and Future Perspectives -- References -- 12 Nanomaterials for Antibacterial Textiles -- 12.1 Introduction -- 12.2 Textile Fibers -- 12.3 Preparatory Processes -- 12.4 Coloration Processes -- 12.5 Environmental Concerns -- 12.6 Antibacterial Function Finish -- 12.6.1 Main Objectives -- 12.6.2 Main Requirements -- 12.6.3 Application Methods or Techniques -- 12.6.4 Chemistry and Mode of Action of Current Antibacterial Agents () -- 12.7 Antibacterial Textiles Using Nanomaterials -- 12.7.1 Greener Nanomaterial Production -- 12.7.1.1 Eco-Friendly Chemical Reduction -- 12.7.1.1.1 Reducing Sugars -- 12.7.1.1.2 Biopolymers.

12.7.1.1.3 Na-Citrate and Tollens Reagent.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.