Helicopter Flight Dynamics : Including a Treatment of Tiltrotor Aircraft.
Material type:
- text
- computer
- online resource
- 9781119401025
- 629.1323
- TL716.5 .P334 2018
Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface to Third Edition -- Preface to Second Edition -- Preface to First Edition -- Acknowledgements -- Notation -- List of Abbreviations -- Chapter 1 Introduction -- 1.1 Simulation Modelling -- 1.2 Flying Qualities -- 1.3 Missing Topics -- 1.4 Simple Guide to the Book -- Chapter 2 Helicopter and Tiltrotor Flight Dynamics - An Introductory Tour -- 2.1 Introduction -- 2.2 Four Reference Points -- 2.2.1 The Mission and Piloting Tasks -- 2.2.2 The Operational Environment -- 2.2.3 The Vehicle Configuration, Dynamics, and Flight Envelope -- Rotor Controls -- Two Distinct Flight Regimes -- Rotor Stall Boundaries -- 2.2.4 The Pilot and Pilot-Vehicle Interface -- 2.2.5 Résumé of the Four Reference Points -- 2.3 Modelling Helicopter/Tiltrotor Flight Dynamics -- 2.3.1 The Problem Domain -- 2.3.2 Multiple Interacting Subsystems -- 2.3.3 Trim, Stability, and Response -- 2.3.4 The Flapping Rotor in a Vacuum -- 2.3.5 The Flapping Rotor in Air - Aerodynamic Damping -- 2.3.6 Flapping Derivatives -- 2.3.7 The Fundamental 90∘ Phase Shift -- 2.3.8 Hub Moments and Rotor/Fuselage Coupling -- 2.3.9 Linearization in General -- 2.3.10 Stability and Control Résumé -- 2.3.11 The Static Stability Derivative Mw -- 2.3.12 Rotor Thrust, Inflow, Zw, and Vertical Gust Response in Hover -- 2.3.13 Gust Response in Forward Flight -- 2.3.14 Vector-Differential Form of Equations of Motion -- 2.3.15 Validation -- 2.3.16 Inverse Simulation -- 2.3.17 Modelling Review -- 2.4 Flying Qualities -- 2.4.1 Pilot Opinion -- 2.4.2 Quantifying Quality Objectively -- 2.4.3 Frequency and Amplitude - Exposing the Natural Dimensions -- 2.4.4 Stability - Early Surprises Compared with Aeroplanes -- 2.4.5 Pilot-in-the-Loop Control -- Attacking a Manoeuvre -- 2.4.6 Bandwidth - A Parameter for All Seasons?.
2.4.7 Flying a Mission Task Element -- 2.4.8 The Cliff Edge and Carefree Handling -- 2.4.9 Agility Factor -- 2.4.10 Pilot's Workload -- 2.4.11 Inceptors and Displays -- 2.4.12 Operational Benefits of Flying Qualities -- 2.4.13 Flying Qualities Review -- 2.5 Design for Flying Qualities -- Stability and Control Augmentation -- 2.5.1 Impurity of Primary Response -- 2.5.2 Strong Cross-Couplings -- 2.5.3 Response Degradation at Flight Envelope Limits -- 2.5.4 Poor Stability -- 2.5.5 The Rotor as a Control Filter -- 2.5.6 Artificial Stability -- 2.6 Tiltrotor Flight Dynamics -- 2.7 Chapter Review -- Chapter 3 Modelling Helicopter Flight Dynamics: Building a Simulation Model -- 3.1 Introduction and Scope -- 3.2 The Formulation of Helicopter Forces and Moments in Level 1 Modelling -- 3.2.1 Main Rotor -- Blade Flapping Dynamics - Introduction -- The Centre-Spring Equivalent Rotor -- Multiblade Coordinates -- Rotor Forces and Moments -- Rotor Torque -- Rotor Inflow -- Momentum Theory for Axial Flight -- Momentum Theory in Forward Flight -- Local-Differential Momentum Theory and Dynamic Inflow -- Rotor Flapping-Further Considerations of the Centre-Spring Approximation -- Rotor in-Plane Motion: Lead-Lag -- Rotor Blade Pitch -- Ground Effect on Inflow and Induced Power -- 3.2.2 The Tail Rotor -- 3.2.3 Fuselage and Empennage -- The Fuselage Aerodynamic Forces and Moments -- The Empennage Aerodynamic Forces and Moments -- 3.2.4 Powerplant and Rotor Governor -- 3.2.5 Flight Control System -- Pitch and Roll Control -- Yaw Control -- Heave Control -- 3.3 Integrated Equations of Motion of the Helicopter -- 3.4 Beyond Level 1 Modelling -- 3.4.1 Rotor Aerodynamics and Dynamics -- Rotor Aerodynamics -- Modelling Section Lift, Drag, and Pitching Moment -- Modelling Local Incidence -- Rotor Dynamics -- 3.4.2 Interactional Aerodynamics -- 3.5 Chapter 3 Epilogue.
Appendix 3A Frames of Reference and Coordinate Transformations -- 3A.1 The Inertial Motion of the Aircraft -- 3A.2 The Orientation Problem - Angular Coordinates of the Aircraft -- 3A.3 Components of Gravitational Acceleration along the Aircraft Axes -- 3A.4 The Rotor System - Kinematics of a Blade Element -- 3A.5 Rotor Reference Planes - Hub, Tip Path, and No-Feathering -- Chapter 4 Modelling Helicopter Flight Dynamics: Trim and Stability Analysis -- 4.1 Introduction and Scope -- 4.2 Trim Analysis -- 4.2.1 The General Trim Problem -- 4.2.2 Longitudinal Partial Trim -- 4.2.3 Lateral/Directional Partial Trim -- 4.2.4 Rotorspeed/Torque Partial Trim -- 4.2.5 Balance of Forces and Moments -- 4.2.6 Control Angles to Support the Forces and Moments -- 4.3 Stability Analysis -- 4.3.1 Linearization -- 4.3.2 The Derivatives -- The Translational Velocity Derivatives -- The Derivatives Xu, Yv, Xv, and Yu (Mv and Lu) -- The Derivatives Mu and Mw -- The Derivatives Mw, Mv, and Mv -- The Derivative Zw -- The Derivatives Lv, Nv -- The Derivatives Nu, Nw, Lu, Lw -- The Angular Velocity Derivatives -- The Derivatives Xq, Yp -- The Derivatives Mq, Lp, Mp, Lq -- The Derivatives Nr, Lr, Np -- The Control Derivatives -- The Derivatives Z 0, Z 1s -- The Derivatives M 0, L 0 -- The Derivatives M 1s, M 1c, L 1s, L 1c -- The Derivatives Y OT, L OT, N OT -- The Effects of Nonuniform Rotor Inflow on Damping and Control Derivatives -- Some Reflections on Derivatives -- 4.3.3 The Natural Modes of Motion -- The Longitudinal Modes -- The Lateral/Directional Modes -- Comparison with Flight -- Appendix 4A The Analysis of Linear Dynamic Systems (with Special Reference to 6-Dof Helicopter Flight) -- Appendix 4B The Three Case Helicopters: Lynx, Bo105 and Puma -- 4B.1 Aircraft Configuration Parameters -- The RAE (DRA) Research Lynx, ZD559 -- The DLR Research Bo105, S123.
The RAE (DRA) Research Puma, XW241 -- Fuselage Aerodynamic Characteristics -- Lynx -- Bo105 -- Puma -- Empennage Aerodynamic Characteristics -- Lynx -- Bo105 -- Puma -- 4B.2 Stability and Control Derivatives -- 4B.3 Tables of Stability and Control Derivatives and System Eigenvalues -- Appendix 4C The Trim Orientation Problem -- Chapter 5 Modelling Helicopter Flight Dynamics: Stability Under Constraint and Response Analysis -- 5.1 Introduction and Scope -- 5.2 Stability Under Constraint -- 5.2.1 Attitude Constraint -- 5.2.2 Flight Path Constraint -- Longitudinal Motion -- Lateral Motion -- 5.3 Analysis of Response to Controls -- 5.3.1 General -- 5.3.2 Heave Response to Collective Control Inputs -- Response to Collective in Hover -- Response to Collective in Forward Flight -- 5.3.3 Pitch and Roll Response to Cyclic Pitch Control Inputs -- Response to Step Inputs in Hover - General Features -- Effects of Rotor Dynamics -- Step Responses in Hover - Effect of Key Rotor Parameters -- Response Variations with Forward Speed -- Stability Versus Agility - Contribution of the Horizontal Tailplane -- Comparison with Flight -- 5.3.4 Yaw/Roll Response to Pedal Control Inputs -- 5.4 Response to Atmospheric Disturbances -- Modelling Atmospheric Disturbances -- Modelling Helicopter Response -- Ride Qualities -- Appendix 5A Speed Stability Below Minimum Power -- A Forgotten Problem? -- Chapter 6 Flying Qualities: Objective Assessment and Criteria Development -- 6.1 General Introduction to Flying Qualities -- 6.2 Introduction and Scope: The Objective Measurement of Quality -- 6.3 Roll Axis Response Criteria -- 6.3.1 Task Margin and Manoeuvre Quickness -- 6.3.2 Moderate to Large Amplitude/Low to Moderate Frequency: Quickness and Control Power -- 6.3.3 Small Amplitude/Moderate to High Frequency: Bandwidth -- Early Efforts in the Time Domain -- Bandwidth -- Phase Delay.
Bandwidth/Phase Delay Boundaries -- Civil Applications -- The Measurement of Bandwidth -- Estimating bw and p -- Control Sensitivity -- 6.3.4 Small Amplitude/Low to Moderate Frequency: Dynamic Stability -- 6.3.5 Trim and Quasi-Static Stability -- 6.4 Pitch Axis Response Criteria -- 6.4.1 Moderate to Large Amplitude/Low to Moderate Frequency: Quickness and Control Power -- 6.4.2 Small Amplitude/Moderate to High Frequency: Bandwidth -- 6.4.3 Small Amplitude/Low to Moderate Frequency: Dynamic Stability -- 6.4.4 Trim and Quasi-Static Stability -- 6.5 Heave Axis Response Criteria -- 6.5.1 Criteria for Hover and Low-Speed Flight -- 6.5.2 Criteria for Torque and Rotorspeed During Vertical Axis Manoeuvres -- 6.5.3 Heave Response Criteria in Forward Flight -- 6.5.4 Heave Response Characteristics in Steep Descent -- 6.6 Yaw Axis Response Criteria -- 6.6.1 Moderate to Large Amplitude/Low to Moderate Frequency: Quickness and Control Power -- 6.6.2 Small Amplitude/Moderate to High Frequency: Bandwidth -- 6.6.3 Small Amplitude/Low to Moderate Frequency: Dynamic Stability -- 6.6.4 Trim and Quasi-Static Stability -- 6.7 Cross-Coupling Criteria -- 6.7.1 Pitch-to-Roll and Roll-to-Pitch Couplings -- 6.7.2 Collective to Yaw Coupling -- 6.7.3 Sideslip to Pitch and Roll Coupling -- 6.8 Multi-Axis Response Criteria and Novel-Response Types -- 6.8.1 Multi-Axis Response Criteria -- 6.8.2 Novel Response Types -- 6.9 Objective Criteria Revisited -- Chapter 7 Flying Qualities: Subjective Assessment and Other Topics -- 7.1 Introduction and Scope -- 7.2 The Subjective Assessment of Flying Quality -- 7.2.1 Pilot Handling Qualities Ratings - HQRs -- 7.2.2 Conducting a Handling Qualities Experiment -- Designing a Mission Task Element -- Evaluating Roll Axis Handling Characteristics -- 7.3 Special Flying Qualities -- 7.3.1 Agility -- Agility as a Military Attribute.
The Agility Factor.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.