ORPP logo
Image from Google Jackets

Rational Design of Solar Cells for Efficient Solar Energy Conversion.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2018Edition: 1st edDescription: 1 online resource (399 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119437468
Subject(s): Genre/Form: Additional physical formats: Print version:: Rational Design of Solar Cells for Efficient Solar Energy ConversionDDC classification:
  • 621.31244
LOC classification:
  • TK2960 .R385 2018
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- Biographies -- List of Contributors -- Preface -- Chapter 1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye-Sensitized Solar Cells -- 1.1 Introduction -- 1.2 Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes -- 1.2.2 Metal Dressed ZnO Nanorods as Photoanodes -- 1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes -- 1.2.4 Metal Dressed ZnO Nanowires as Photoanodes -- 1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs -- 1.3 Conclusions and Outlook -- References -- Chapter 2 Cosensitization Strategies for Dye-Sensitized Solar Cells -- 2.1 Introduction -- 2.2 Cosensitization -- 2.2.1 Cosensitization of Metal Complexes with Organic Dyes -- 2.2.1.1 Phthalocyanine-based Metal Complexes -- 2.2.1.2 Porphyrin-based Metal Complexes -- 2.2.1.3 Ruthenium-based Metal Complexes -- 2.2.2 Cosensitization of Organic-Organic Dyes -- 2.3 Conclusions -- Acknowledgements -- References -- Chapter 3 Natural Dye-Sensitized Solar Cells - Strategies and Measures -- 3.1 Introduction -- 3.1.1 Mechanism of the Dye-Sensitized Solar Cell Compared with the Z-scheme of Photosynthesis -- 3.2 Components of Dye-sensitized Solar Cell -- 3.2.1 Photoelectrode -- 3.2.2 Dye -- 3.2.3 Liquid Electrolyte -- 3.2.4 Counterelectrode -- 3.3 Fabrication of Natural DSSCs -- 3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method -- 3.3.2 Characterization of the Photoelectrode for DSSCs -- 3.3.3 Preparation of Natural Dye -- 3.3.4 Sensitization -- 3.3.5 Arrangement of the DSSC -- 3.4 Efficiency and Stability Enhancement in Natural Dye-Sensitized Solar Cells -- 3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes.
3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes -- 3.4.2 Citric Acid - Best Solvent for Extracting Anthocyanins -- 3.4.3. Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs -- 3.4.3.1 Preparation of Buffer Layers - Sodium Alginate and Spirulina -- 3.4.4 Sodium-doped Nanorods for Enhancing the Natural DSSC Performance -- 3.4.4.1 Preparing Sodium-doped Nanorods as the Photoelectrode -- 3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage -- 3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes -- 3.6 Conclusions -- References -- Chapter 4 Advantages of Polymer Electrolytes for Dye-Sensitized Solar Cells -- 4.1 Why Solar Cells? -- 4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs) -- 4.3 Gel Polymer Electrolytes (GPEs) -- 4.3.1 Chitosan (Ch) and Blends -- 4.3.2 Phthaloylchitosan (PhCh) and Blends -- 4.3.3 Poly(Vinyl Alcohol) (PVA) -- 4.3.4 Polyacrylonitrile (PAN) -- 4.3.5 Polyvinylidene Fluoride (PVdF) -- 4.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 5 Advantages of Polymer Electrolytes Towards Dye-sensitized Solar Cells -- 5.1 Introduction -- 5.1.1 Energy Demand -- 5.1.1.1 Generation of Solar Cells -- 5.1.2 Types of Electrolyte Used in Third Generation Solar Cells -- 5.1.2.1 Liquid Electrolytes (LEs) -- 5.1.2.2 Room Temperature Ionic Liquids (RTILs) -- 5.1.2.3 Solid State Hole Transport Materials (SS-HTMs) -- 5.2 Polymer Electrolytes -- 5.2.1 Mechanism of Ion Transport in Polymer Electrolytes -- 5.2.2 Types of Polymer Electrolyte -- 5.2.2.1 Solid Polymer Electrolytes -- 5.2.2.2 Gel Polymer Electrolytes -- 5.2.2.3 Composite Polymer Electrolyte -- 5.3 Dye-sensitized Solar Cells -- 5.3.1 Components and Operational Principle -- 5.3.1.1 Substrate -- 5.3.1.2 Photoelectrode -- 5.3.1.3 Photosensitizer -- 5.3.1.4 Redox Electrolyte.
5.3.1.5 Counter Electrode -- 5.3.2 Application of Polymer Electrolytes in DSSCs -- 5.3.2.1 Solid-state Dye-Sensitized Solar Cells (SS-DSSCs) -- 5.3.2.2 Quasi-solid-state Dye-Sensitized Solar Cells (QS-DSSC) -- 5.3.2.3 Types of Additives in GPEs -- 5.3.3 Bifacial DSSCs -- 5.4 Quantum Dot Sensitized Solar Cells (QDSSC) -- 5.5 Perovskite-Sensitized Solar Cells (PSSC) -- 5.6 Conclusion -- Acknowledgements -- References -- Chapter 6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion -- 6.1 Introduction -- 6.2 Principles of Next Generation Solar Cells -- 6.2.1 Dye‐sensitized Solar Cells -- 6.2.2 Principles of Quantum Dot Sensitized Solar Cells -- 6.2.3 Principles of Perovskite Solar Cells -- 6.3 Platinum-free Counterelectrode Materials -- 6.3.1 Carbon-based Materials for Solar Energy Conversion -- 6.3.2 Metal Nitride and Carbide Materials -- 6.3.3 Metal Sulfide Materials -- 6.3.4 Composite Materials -- 6.3.5 Metal Oxide Materials -- 6.3.6 Polymer Counterelectrodes -- 6.4 Summary and Outlook -- References -- Chapter 7 Design and Fabrication of Carbon‐based Nanostructured Counter Electrode Materials for Dye-sensitized Solar Cells -- 7.1 Photovoltaic Solar Cells - An Overview -- 7.1.1 First Generation Solar Cells -- 7.1.2 Second Generation Solar Cells -- 7.1.3 Third Generation Solar Cells -- 7.1.4 Fourth Generation Solar Cells -- 7.2 Dye-sensitized Solar Cells -- 7.2.1 Major Components of DSSCs -- 7.2.1.1 Transparent Conducting Glass Substrate -- 7.2.1.2 Photoelectrode -- 7.2.1.3 Dye Sensitizer -- 7.2.1.4 Redox Electrolytes -- 7.2.1.5 Counterelectrode -- 7.2.2 Working Mechanism of DSSCs -- 7.3 Carbon-based Nanostructured CE Materials for DSSCs -- 7.4 Conclusions -- References -- Chapter 8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers -- 8.1 Introduction.
8.2 Research Areas in Organic Solar Cells -- 8.3 An Overview of Inverted Organic Solar Cells -- 8.3.1 Transport Layers in Inverted Organic Solar Cells -- 8.3.2 PEDOT:PSS Hole Transport Layer -- 8.3.3 Titanium Oxide Electron Transport Layer -- 8.4 Issues in Inverted Organic Solar Cells and Respective Solutions -- 8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells -- 8.4.2 Light-soaking Issue of TiOx-based Inverted Organic Solar Cells -- 8.5 Overcoming the Wettability Issue and Light-soaking Issue in Inverted Organic Solar Cells -- 8.5.1 Fluorosurfactant-modified PEDOT:PSS as Hole Transport Layer -- 8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer -- 8.6 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 9 Fabrication of Metal Top Electrode via Solution‐based Printing Technique for Efficient Inverted Organic Solar Cells -- 9.1 Introduction -- 9.2 Organic Photovoltaic Cells -- 9.3 Working Principle -- 9.4 Device Architecture -- 9.4.1 Single Layer or Monolayer Device -- 9.4.2 Planar Heterojunction Device -- 9.4.3 Bulk Heterojunction Device -- 9.4.4 Ordered Bulk Heterojunction Device -- 9.4.5 Inverted Organic Solar Cells -- 9.5 Fabrication Process -- 9.5.1 Hybrid-EHDA Technique -- 9.5.1.1 Flow Rate -- 9.5.1.2 Applied Potential -- 9.5.1.3 Pneumatic Pressure -- 9.5.1.4 Stand-off Distance -- 9.5.1.5 Nozzle Diameter -- 9.5.1.6 Ink Properties -- 9.5.2 Mode of Atomization -- 9.5.2.1 Dripping Mode -- 9.5.2.2 Unstable Spray Mode -- 9.5.2.3 Stable Spray Mode -- 9.6 Fabrication of Inverted Organic Solar Cells -- 9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate -- 9.6.2 Deposition of P3HT:PCBM -- 9.6.3 Deposition of PEDOT:PSS -- 9.6.4 Deposition of Silver as a Top Electrode -- 9.7 Device Morphology -- 9.8 Device Performance -- 9.9 Conclusion -- Acknowledgements -- References.
Chapter 10 Polymer Solar Cells - An Energy Technology for the Future -- 10.1 Introduction -- 10.2 Materials Developments for Bulk Heterojunction Solar Cells -- 10.2.1 Conjugated Polymer-Fullerene Solar Cells -- 10.2.2 Non-Fullerene Polymer Solar Cells -- 10.2.3 All-Polymer Solar Cells -- 10.3 Materials Developments for Molecular Heterojunction Solar Cells -- 10.3.1 Double-cable Polymers -- 10.4 Developments in Device Structures -- 10.4.1 Tandem Solar Cells -- 10.4.2 Inverted Polymer Solar Cells -- 10.5 Conclusions -- Acknowledgements -- References -- Chapter 11 Rational Strategies for Large-area Perovskite Solar Cells: Laboratory Scale to Industrial Technology -- 11.1 Introduction -- 11.2 Perovskite -- 11.3 Perovskite Solar Cells -- 11.3.1 Architecture -- 11.3.1.1 Mesoporous PSCs -- 11.3.1.2 Planar PSCs -- 11.4 Device Processing -- 11.4.1 Solvent Engineering -- 11.4.2 Compositional Engineering -- 11.4.3 Interfacial Engineering -- 11.5 Enhancing the Stability of Devices -- 11.5.1 Deposition Techniques -- 11.5.1.1 Spin Coating -- 11.5.1.2 Blade Coating -- 11.5.1.3 Slot Die Coating -- 11.5.1.4 Screen Printing -- 11.5.1.5 Spray Coating -- 11.5.1.6 Laser Patterning -- 11.5.1.7 Roll-to-Roll Deposition -- 11.5.1.8 Other Large Area Deposition Techniques -- 11.6 Summary -- Acknowledgement -- References -- Chapter 12 Hot Electrons Role in Biomolecule-based Quantum Dot Hybrid Solar Cells -- 12.1 Introduction -- 12.2 Classifications of Solar Cells -- 12.2.1 Inorganic Solar Cells -- 12.2.2 Organic Solar Cells (OSCs) -- 12.2.3 Hybrid Solar Cells -- 12.3 Main Losses in Solar Cells -- 12.3.1 Recombination Loss -- 12.3.2 Contact Losses -- 12.4 Hot Electron Concept in Materials -- 12.5 Methodology -- 12.5.1 Hot Injection Method -- 12.5.1.1 Nucleation and Growth Stages -- 12.5.1.2 Merits of this Method -- 12.6 Material Synthesis -- 12.6.1 CdSe QD Preparation.
12.6.2 QD-βC Hybrid Formation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- Biographies -- List of Contributors -- Preface -- Chapter 1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye-Sensitized Solar Cells -- 1.1 Introduction -- 1.2 Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes -- 1.2.2 Metal Dressed ZnO Nanorods as Photoanodes -- 1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes -- 1.2.4 Metal Dressed ZnO Nanowires as Photoanodes -- 1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes -- 1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs -- 1.3 Conclusions and Outlook -- References -- Chapter 2 Cosensitization Strategies for Dye-Sensitized Solar Cells -- 2.1 Introduction -- 2.2 Cosensitization -- 2.2.1 Cosensitization of Metal Complexes with Organic Dyes -- 2.2.1.1 Phthalocyanine-based Metal Complexes -- 2.2.1.2 Porphyrin-based Metal Complexes -- 2.2.1.3 Ruthenium-based Metal Complexes -- 2.2.2 Cosensitization of Organic-Organic Dyes -- 2.3 Conclusions -- Acknowledgements -- References -- Chapter 3 Natural Dye-Sensitized Solar Cells - Strategies and Measures -- 3.1 Introduction -- 3.1.1 Mechanism of the Dye-Sensitized Solar Cell Compared with the Z-scheme of Photosynthesis -- 3.2 Components of Dye-sensitized Solar Cell -- 3.2.1 Photoelectrode -- 3.2.2 Dye -- 3.2.3 Liquid Electrolyte -- 3.2.4 Counterelectrode -- 3.3 Fabrication of Natural DSSCs -- 3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method -- 3.3.2 Characterization of the Photoelectrode for DSSCs -- 3.3.3 Preparation of Natural Dye -- 3.3.4 Sensitization -- 3.3.5 Arrangement of the DSSC -- 3.4 Efficiency and Stability Enhancement in Natural Dye-Sensitized Solar Cells -- 3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes.

3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes -- 3.4.2 Citric Acid - Best Solvent for Extracting Anthocyanins -- 3.4.3. Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs -- 3.4.3.1 Preparation of Buffer Layers - Sodium Alginate and Spirulina -- 3.4.4 Sodium-doped Nanorods for Enhancing the Natural DSSC Performance -- 3.4.4.1 Preparing Sodium-doped Nanorods as the Photoelectrode -- 3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage -- 3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes -- 3.6 Conclusions -- References -- Chapter 4 Advantages of Polymer Electrolytes for Dye-Sensitized Solar Cells -- 4.1 Why Solar Cells? -- 4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs) -- 4.3 Gel Polymer Electrolytes (GPEs) -- 4.3.1 Chitosan (Ch) and Blends -- 4.3.2 Phthaloylchitosan (PhCh) and Blends -- 4.3.3 Poly(Vinyl Alcohol) (PVA) -- 4.3.4 Polyacrylonitrile (PAN) -- 4.3.5 Polyvinylidene Fluoride (PVdF) -- 4.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 5 Advantages of Polymer Electrolytes Towards Dye-sensitized Solar Cells -- 5.1 Introduction -- 5.1.1 Energy Demand -- 5.1.1.1 Generation of Solar Cells -- 5.1.2 Types of Electrolyte Used in Third Generation Solar Cells -- 5.1.2.1 Liquid Electrolytes (LEs) -- 5.1.2.2 Room Temperature Ionic Liquids (RTILs) -- 5.1.2.3 Solid State Hole Transport Materials (SS-HTMs) -- 5.2 Polymer Electrolytes -- 5.2.1 Mechanism of Ion Transport in Polymer Electrolytes -- 5.2.2 Types of Polymer Electrolyte -- 5.2.2.1 Solid Polymer Electrolytes -- 5.2.2.2 Gel Polymer Electrolytes -- 5.2.2.3 Composite Polymer Electrolyte -- 5.3 Dye-sensitized Solar Cells -- 5.3.1 Components and Operational Principle -- 5.3.1.1 Substrate -- 5.3.1.2 Photoelectrode -- 5.3.1.3 Photosensitizer -- 5.3.1.4 Redox Electrolyte.

5.3.1.5 Counter Electrode -- 5.3.2 Application of Polymer Electrolytes in DSSCs -- 5.3.2.1 Solid-state Dye-Sensitized Solar Cells (SS-DSSCs) -- 5.3.2.2 Quasi-solid-state Dye-Sensitized Solar Cells (QS-DSSC) -- 5.3.2.3 Types of Additives in GPEs -- 5.3.3 Bifacial DSSCs -- 5.4 Quantum Dot Sensitized Solar Cells (QDSSC) -- 5.5 Perovskite-Sensitized Solar Cells (PSSC) -- 5.6 Conclusion -- Acknowledgements -- References -- Chapter 6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion -- 6.1 Introduction -- 6.2 Principles of Next Generation Solar Cells -- 6.2.1 Dye‐sensitized Solar Cells -- 6.2.2 Principles of Quantum Dot Sensitized Solar Cells -- 6.2.3 Principles of Perovskite Solar Cells -- 6.3 Platinum-free Counterelectrode Materials -- 6.3.1 Carbon-based Materials for Solar Energy Conversion -- 6.3.2 Metal Nitride and Carbide Materials -- 6.3.3 Metal Sulfide Materials -- 6.3.4 Composite Materials -- 6.3.5 Metal Oxide Materials -- 6.3.6 Polymer Counterelectrodes -- 6.4 Summary and Outlook -- References -- Chapter 7 Design and Fabrication of Carbon‐based Nanostructured Counter Electrode Materials for Dye-sensitized Solar Cells -- 7.1 Photovoltaic Solar Cells - An Overview -- 7.1.1 First Generation Solar Cells -- 7.1.2 Second Generation Solar Cells -- 7.1.3 Third Generation Solar Cells -- 7.1.4 Fourth Generation Solar Cells -- 7.2 Dye-sensitized Solar Cells -- 7.2.1 Major Components of DSSCs -- 7.2.1.1 Transparent Conducting Glass Substrate -- 7.2.1.2 Photoelectrode -- 7.2.1.3 Dye Sensitizer -- 7.2.1.4 Redox Electrolytes -- 7.2.1.5 Counterelectrode -- 7.2.2 Working Mechanism of DSSCs -- 7.3 Carbon-based Nanostructured CE Materials for DSSCs -- 7.4 Conclusions -- References -- Chapter 8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers -- 8.1 Introduction.

8.2 Research Areas in Organic Solar Cells -- 8.3 An Overview of Inverted Organic Solar Cells -- 8.3.1 Transport Layers in Inverted Organic Solar Cells -- 8.3.2 PEDOT:PSS Hole Transport Layer -- 8.3.3 Titanium Oxide Electron Transport Layer -- 8.4 Issues in Inverted Organic Solar Cells and Respective Solutions -- 8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells -- 8.4.2 Light-soaking Issue of TiOx-based Inverted Organic Solar Cells -- 8.5 Overcoming the Wettability Issue and Light-soaking Issue in Inverted Organic Solar Cells -- 8.5.1 Fluorosurfactant-modified PEDOT:PSS as Hole Transport Layer -- 8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer -- 8.6 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 9 Fabrication of Metal Top Electrode via Solution‐based Printing Technique for Efficient Inverted Organic Solar Cells -- 9.1 Introduction -- 9.2 Organic Photovoltaic Cells -- 9.3 Working Principle -- 9.4 Device Architecture -- 9.4.1 Single Layer or Monolayer Device -- 9.4.2 Planar Heterojunction Device -- 9.4.3 Bulk Heterojunction Device -- 9.4.4 Ordered Bulk Heterojunction Device -- 9.4.5 Inverted Organic Solar Cells -- 9.5 Fabrication Process -- 9.5.1 Hybrid-EHDA Technique -- 9.5.1.1 Flow Rate -- 9.5.1.2 Applied Potential -- 9.5.1.3 Pneumatic Pressure -- 9.5.1.4 Stand-off Distance -- 9.5.1.5 Nozzle Diameter -- 9.5.1.6 Ink Properties -- 9.5.2 Mode of Atomization -- 9.5.2.1 Dripping Mode -- 9.5.2.2 Unstable Spray Mode -- 9.5.2.3 Stable Spray Mode -- 9.6 Fabrication of Inverted Organic Solar Cells -- 9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate -- 9.6.2 Deposition of P3HT:PCBM -- 9.6.3 Deposition of PEDOT:PSS -- 9.6.4 Deposition of Silver as a Top Electrode -- 9.7 Device Morphology -- 9.8 Device Performance -- 9.9 Conclusion -- Acknowledgements -- References.

Chapter 10 Polymer Solar Cells - An Energy Technology for the Future -- 10.1 Introduction -- 10.2 Materials Developments for Bulk Heterojunction Solar Cells -- 10.2.1 Conjugated Polymer-Fullerene Solar Cells -- 10.2.2 Non-Fullerene Polymer Solar Cells -- 10.2.3 All-Polymer Solar Cells -- 10.3 Materials Developments for Molecular Heterojunction Solar Cells -- 10.3.1 Double-cable Polymers -- 10.4 Developments in Device Structures -- 10.4.1 Tandem Solar Cells -- 10.4.2 Inverted Polymer Solar Cells -- 10.5 Conclusions -- Acknowledgements -- References -- Chapter 11 Rational Strategies for Large-area Perovskite Solar Cells: Laboratory Scale to Industrial Technology -- 11.1 Introduction -- 11.2 Perovskite -- 11.3 Perovskite Solar Cells -- 11.3.1 Architecture -- 11.3.1.1 Mesoporous PSCs -- 11.3.1.2 Planar PSCs -- 11.4 Device Processing -- 11.4.1 Solvent Engineering -- 11.4.2 Compositional Engineering -- 11.4.3 Interfacial Engineering -- 11.5 Enhancing the Stability of Devices -- 11.5.1 Deposition Techniques -- 11.5.1.1 Spin Coating -- 11.5.1.2 Blade Coating -- 11.5.1.3 Slot Die Coating -- 11.5.1.4 Screen Printing -- 11.5.1.5 Spray Coating -- 11.5.1.6 Laser Patterning -- 11.5.1.7 Roll-to-Roll Deposition -- 11.5.1.8 Other Large Area Deposition Techniques -- 11.6 Summary -- Acknowledgement -- References -- Chapter 12 Hot Electrons Role in Biomolecule-based Quantum Dot Hybrid Solar Cells -- 12.1 Introduction -- 12.2 Classifications of Solar Cells -- 12.2.1 Inorganic Solar Cells -- 12.2.2 Organic Solar Cells (OSCs) -- 12.2.3 Hybrid Solar Cells -- 12.3 Main Losses in Solar Cells -- 12.3.1 Recombination Loss -- 12.3.2 Contact Losses -- 12.4 Hot Electron Concept in Materials -- 12.5 Methodology -- 12.5.1 Hot Injection Method -- 12.5.1.1 Nucleation and Growth Stages -- 12.5.1.2 Merits of this Method -- 12.6 Material Synthesis -- 12.6.1 CdSe QD Preparation.

12.6.2 QD-βC Hybrid Formation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.