ORPP logo
Image from Google Jackets

Corrosion Engineering : Principles and Solved Problems.

By: Material type: TextTextPublisher: San Diego : Elsevier, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (813 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780444627278
Subject(s): Genre/Form: Additional physical formats: Print version:: Corrosion EngineeringDDC classification:
  • 620.11223
LOC classification:
  • TA462 -- .P676 2015eb
Online resources:
Contents:
Front Cover -- Corrosion Engineering: Principles and Solved Problems -- Copyright -- Contents -- Acknowledgment -- Preface -- Chapter 1: Evaluation of Corrosion -- 1.1. Significance and Cost of Corrosion -- 1.2. Definition -- 1.3. Conditions for the Initiation of Corrosion -- 1.4. Electrochemical Polarization -- 1.5. Passivity -- 1.6. Types of Corrosion -- 1.7. Brief Description of Different Types of Corrosion -- 1.7.1. Uniform corrosion -- 1.7.2. Galvanic corrosion -- 1.7.3. Pitting corrosion -- 1.7.4. Crevice corrosion -- 1.7.5. Filiform corrosion -- 1.7.6. Stress corrosion cracking -- 1.7.7. Metallurgy of SCC -- 1.7.8. Solid solution composition and grain boundary segregation -- 1.7.9. Alloy phase transformation and associated solute depleted zones -- 1.7.10. Duplex structure -- 1.7.11. Cold work -- 1.7.12. Hydrogen embrittlement -- 1.7.13. Corrosion fatigue cracking -- 1.8. Corrosion Rate Determination -- 1.8.1. Calculation of corrosion rate form corrosion current -- References -- Chapter 2: Thermodynamics in the Electrochemical Reactions of Corrosion -- 2.1. Introduction -- 2.2. Electrochemical Corrosion -- 2.3. Thermodynamics of Corrosion Processes -- 2.4. Equilibrium Electrode Potentials -- 2.5. Electrochemical Half-Cells and Electrode Potentials -- 2.6. Electromotive Force Series -- 2.7. Determination of Electrochemical/Corrosion Reaction Direction by Gibbs Energy -- 2.8. Reference Electrodes of Importance in Corrosion Processes -- 2.8.1. Determination of reversible potential of the hydrogen electrode -- 2.8.2. Determination of reversible potential of the oxygen electrode -- 2.8.3. Determination of cell potential of the hydrogen-oxygen cell (fuel cell) -- 2.8.4. Determination of electrode potential of a standard Weston cell -- 2.8.5. Determination of electrode potentials for electrodes of the second kind -- 2.8.6. Calomel electrode.
2.8.7. Silver-silver chloride electrode -- 2.8.8. Copper-copper sulfate electrode -- 2.9. Measurement of Reversible Cell Potential with Liquid Junction Potential -- 2.10. Measurement of Corrosion Potential -- 2.11. Construction of Pourbaix Diagrams -- 2.11.1. Regions of electrochemical stability of water -- 2.11.2. Construction of pourbaix diagram for zinc -- 2.11.3. Construction of Pourbaix diagram for tin -- 2.11.4. Pourbaix diagram for iron -- 2.11.5. Construction of Pourbaix diagram for nickel -- 2.12. Case Studies -- 2.12.1. Activity coefficients -- 2.12.2. Evaluation of theoretical tendency of metals to corrode -- 2.12.3. Hydrogen and oxygen electrodes -- Exercises -- References -- Chapter 3: Electrochemical Kinetics of Corrosion -- 3.1. Introduction -- 3.2. Ohmic Polarization -- 3.3. Electrochemical Polarization -- 3.3.1. Special cases of Butler-Volmer equation-high field approximation -- 3.3.2. Low-field approximation -- 3.4. Concentration Polarization -- 3.5. Relevance of Electrochemical Kinetics to Corrosion -- 3.6. Construction of Evans Diagrams -- 3.7. Effects of Polarization Behavior on the Corrosion Rate -- 3.8. Effects of Mass Transfer on Electrode Kinetics -- 3.8.1. Diffusion-limited corrosion rate -- 3.8.2. Rotating disk electrode -- Exercises -- Calculate: -- References -- Chapter 4: Passivity -- 4.1. Active-Passive Corrosion Behavior -- 4.2. Applications of Potentiostatic Polarization Measurements -- 4.3. Galvanostatic Anode Polarization -- 4.4. Fundamentals of Passivity -- 4.4.1. The film and adsorption theories of passivity -- 4.4.2. Thermodynamics -- 4.4.3. Kinetics of passivation processes -- 4.5. Factors Affecting Passivation -- 4.5.1. Effect of acid concentration on passivity of an active-passive metal.
4.5.2. Effect of solution velocity on active-passive metals and alloys-construction of polarization curve for stainless s... -- 4.5.3. Criterion for passivation -- 4.5.4. Effect of oxidizer concentration on passivity -- 4.6. Methods for Spontaneous Passivation of Metals -- 4.7. Alloy Evaluation -- 4.8. Anodic Protection -- 4.8.1. Anodic protection systems -- 4.8.2. Design requirements -- 4.8.3. Applications -- 4.9. Composition and Structure of Iron Passive Films -- 4.9.1. Stainless steel -- 4.9.2. Crystalline structure -- Exercises -- References -- Chapter 5: Basics of Corrosion Measurements -- 5.1. Introduction -- 5.2. Polarization Resistance -- 5.3. Calculation of Corrosion Rates from Polarization Data-Stern and Geary Equation -- 5.3.1. Calculation of corrosion rate from the corrosion current -- 5.4. Electrochemical Techniques to Measure Polarization Resistance -- 5.4.1. Linear polarization technique -- 5.4.2. Galvanostatic technique -- 5.4.3. Nonlinearity of polarization curves -- 5.5. Applications of Linear Polarization Technique-Estimation of Corrosion Rates -- 5.6. Corrosion Potential Measurements as a Function of Time (OCP vs. Time) -- 5.7. Tafel Extrapolation Method -- 5.7.1. Principles of the Tafel extrapolation method -- 5.7.2. Tafel extrapolation procedure -- 5.8. Potentiodynamic Polarization Measurements -- 5.9. Electrochemical Impedance Spectroscopy -- 5.9.1. Principles of the method -- 5.9.2. Expression for impedance of the R-L-C series circuit -- 5.9.3. AC impedance plots: impedance spectra with their associated equivalent circuits -- 5.9.4. Application of electrochemical impedance to corrosion studies -- 5.10. Advantages and Limitations of EIS -- 5.11. Recent Corrosion Research -- Exercises -- References -- Chapter 6: Galvanic Corrosion -- 6.1. Definition of Galvanic Corrosion -- 6.2. Galvanic Series -- 6.3. Experimental Measurements.
6.3.1. Polarization in galvanic couples -- 6.3.2. Zero resistance ammeter -- 6.3.3. Scanning vibrating electrode technique -- 6.4. Prevention of Galvanic Corrosion -- 6.5. Theoretical Aspects -- 6.5.1. Effect of exchange current density on galvanic current in Fe-Zn galvanic couple -- 6.5.2. Differential aeration: oxygen concentration cell -- 6.6. Testing Methods in Galvanic Corrosion -- 6.6.1. Scanning vibrating electrode technique -- 6.6.2. Shadowgraphy and Mach-Zehnder interferometry -- 6.6.3. Other methods -- 6.7. Automotive Applications -- 6.8. Galvanic Corrosion in Concrete Structures -- 6.9. Refrigeration -- 6.10. Dental Applications -- 6.11. Corrosion of Microstructures -- 6.12. Galvanic Coatings -- 6.13. Numerical Modeling of Galvanic Corrosion Couples -- Exercises -- References -- Chapter 7: Pitting and Crevice Corrosion -- 7.1. Introduction -- 7.2. Critical Pitting Potential and Evaluation of Pitting Corrosion -- 7.3. Mechanism of Pitting Corrosion -- 7.3.1. Passive film breakdown -- 7.3.2. Autocatalytic mechanism of pit growth -- 7.3.2.1. Formation of nucleated pits -- 7.3.2.2. Propagation pit growth -- 7.3.2.3. Pit arrest -- 7.3.2.4. MnS inclusions -- 7.4. Effect of Temperature -- 7.5. Effects of Alloy Composition on Pitting Corrosion -- 7.6. Inhibition of Pitting Corrosion -- 7.7. Crevice Corrosion -- 7.7.1. Mechanism of crevice corrosion -- 7.7.2. Inhibition of crevice corrosion -- 7.8. Filiform Corrosion -- 7.9. Prevention -- Exercises -- References -- Chapter 8: Hydrogen Permeation and Hydrogen-Induced Cracking -- 8.1. Introduction -- 8.2. Hydrogen Evolution Reaction -- 8.2.1. Kinetics of HER -- 8.2.2. Theoretical diffusion solution -- 8.2.3. Evaluation of diffusivity -- 8.2.4. Basic model for hydrogen permeation: the Iyer-Pickering-Zamanzadeh (IPZ) model -- 8.2.5. Experimental determination of hydrogen permeation parameters.
8.2.6. Evaluation of rate constants for hydrogen absorption and diffusivity into metals -- 8.3. Hydrogen-Induced Damage -- 8.3.1. Hydrogen-induced cracking -- 8.3.2. Hydrogen embrittlement -- 8.3.3. Hydrogen blistering -- 8.3.4. Hydrogen stress cracking -- 8.3.5. Recent studies on hydrogen-induced damage -- 8.4. Preventing Hydrogen Damage in Metals -- Exercises -- List of parameters: -- List of parameters: -- List of parameters: -- Use the following parameters: -- References -- Chapter 9: Stress Corrosion Cracking -- 9.1. Definition and Characteristics of Stress Corrosion Cracking -- 9.2. Testing Methods -- 9.2.1. Constant deformation tests -- 9.2.1.1. Two-point loaded specimens -- 9.2.1.2. Three-point loaded specimen -- 9.2.1.3. Four-point loaded specimen -- 9.2.1.4. Double beam specimen -- 9.2.2. Sustained load tests -- 9.2.3. Slow strain rate tensile testing -- 9.3. Fracture Mechanics Testing -- 9.3.1. Test methods -- 9.3.2. Precracked cantilever beam specimens -- 9.3.3. Linearly increasing stress test -- 9.4. Examples of Stress Corrosion Cracking -- 9.5. SCC Models -- 9.5.1. Film rupture model -- 9.5.2. Fracture-induced cleavage model -- 9.5.3. Localized surface plasticity model -- 9.5.4. Atomic surface mobility model -- 9.6. Metallurgy of Stress Corrosion Cracking -- 9.6.1. Solid solution composition -- 9.6.2. Grain boundary segregation -- 9.6.3. Alloy phase transformation and associated solute depleted zones -- 9.6.4. Duplex structures -- 9.6.5. Cold work -- 9.7. Electrochemical Effects -- 9.8. Hydrogen Embrittlement -- 9.9. Corrosion Fatigue Cracking -- 9.10. Prevention of Stress Corrosion Cracking -- Exercises -- References -- Chapter 10: Atmospheric Corrosion -- 10.1. Introduction -- 10.2. Atmospheric Classification -- 10.3. Electrochemical Mechanism -- 10.3.1. Corrosion of iron and low alloy steels.
10.4. Factors Affecting Atmospheric Corrosion.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Corrosion Engineering: Principles and Solved Problems -- Copyright -- Contents -- Acknowledgment -- Preface -- Chapter 1: Evaluation of Corrosion -- 1.1. Significance and Cost of Corrosion -- 1.2. Definition -- 1.3. Conditions for the Initiation of Corrosion -- 1.4. Electrochemical Polarization -- 1.5. Passivity -- 1.6. Types of Corrosion -- 1.7. Brief Description of Different Types of Corrosion -- 1.7.1. Uniform corrosion -- 1.7.2. Galvanic corrosion -- 1.7.3. Pitting corrosion -- 1.7.4. Crevice corrosion -- 1.7.5. Filiform corrosion -- 1.7.6. Stress corrosion cracking -- 1.7.7. Metallurgy of SCC -- 1.7.8. Solid solution composition and grain boundary segregation -- 1.7.9. Alloy phase transformation and associated solute depleted zones -- 1.7.10. Duplex structure -- 1.7.11. Cold work -- 1.7.12. Hydrogen embrittlement -- 1.7.13. Corrosion fatigue cracking -- 1.8. Corrosion Rate Determination -- 1.8.1. Calculation of corrosion rate form corrosion current -- References -- Chapter 2: Thermodynamics in the Electrochemical Reactions of Corrosion -- 2.1. Introduction -- 2.2. Electrochemical Corrosion -- 2.3. Thermodynamics of Corrosion Processes -- 2.4. Equilibrium Electrode Potentials -- 2.5. Electrochemical Half-Cells and Electrode Potentials -- 2.6. Electromotive Force Series -- 2.7. Determination of Electrochemical/Corrosion Reaction Direction by Gibbs Energy -- 2.8. Reference Electrodes of Importance in Corrosion Processes -- 2.8.1. Determination of reversible potential of the hydrogen electrode -- 2.8.2. Determination of reversible potential of the oxygen electrode -- 2.8.3. Determination of cell potential of the hydrogen-oxygen cell (fuel cell) -- 2.8.4. Determination of electrode potential of a standard Weston cell -- 2.8.5. Determination of electrode potentials for electrodes of the second kind -- 2.8.6. Calomel electrode.

2.8.7. Silver-silver chloride electrode -- 2.8.8. Copper-copper sulfate electrode -- 2.9. Measurement of Reversible Cell Potential with Liquid Junction Potential -- 2.10. Measurement of Corrosion Potential -- 2.11. Construction of Pourbaix Diagrams -- 2.11.1. Regions of electrochemical stability of water -- 2.11.2. Construction of pourbaix diagram for zinc -- 2.11.3. Construction of Pourbaix diagram for tin -- 2.11.4. Pourbaix diagram for iron -- 2.11.5. Construction of Pourbaix diagram for nickel -- 2.12. Case Studies -- 2.12.1. Activity coefficients -- 2.12.2. Evaluation of theoretical tendency of metals to corrode -- 2.12.3. Hydrogen and oxygen electrodes -- Exercises -- References -- Chapter 3: Electrochemical Kinetics of Corrosion -- 3.1. Introduction -- 3.2. Ohmic Polarization -- 3.3. Electrochemical Polarization -- 3.3.1. Special cases of Butler-Volmer equation-high field approximation -- 3.3.2. Low-field approximation -- 3.4. Concentration Polarization -- 3.5. Relevance of Electrochemical Kinetics to Corrosion -- 3.6. Construction of Evans Diagrams -- 3.7. Effects of Polarization Behavior on the Corrosion Rate -- 3.8. Effects of Mass Transfer on Electrode Kinetics -- 3.8.1. Diffusion-limited corrosion rate -- 3.8.2. Rotating disk electrode -- Exercises -- Calculate: -- References -- Chapter 4: Passivity -- 4.1. Active-Passive Corrosion Behavior -- 4.2. Applications of Potentiostatic Polarization Measurements -- 4.3. Galvanostatic Anode Polarization -- 4.4. Fundamentals of Passivity -- 4.4.1. The film and adsorption theories of passivity -- 4.4.2. Thermodynamics -- 4.4.3. Kinetics of passivation processes -- 4.5. Factors Affecting Passivation -- 4.5.1. Effect of acid concentration on passivity of an active-passive metal.

4.5.2. Effect of solution velocity on active-passive metals and alloys-construction of polarization curve for stainless s... -- 4.5.3. Criterion for passivation -- 4.5.4. Effect of oxidizer concentration on passivity -- 4.6. Methods for Spontaneous Passivation of Metals -- 4.7. Alloy Evaluation -- 4.8. Anodic Protection -- 4.8.1. Anodic protection systems -- 4.8.2. Design requirements -- 4.8.3. Applications -- 4.9. Composition and Structure of Iron Passive Films -- 4.9.1. Stainless steel -- 4.9.2. Crystalline structure -- Exercises -- References -- Chapter 5: Basics of Corrosion Measurements -- 5.1. Introduction -- 5.2. Polarization Resistance -- 5.3. Calculation of Corrosion Rates from Polarization Data-Stern and Geary Equation -- 5.3.1. Calculation of corrosion rate from the corrosion current -- 5.4. Electrochemical Techniques to Measure Polarization Resistance -- 5.4.1. Linear polarization technique -- 5.4.2. Galvanostatic technique -- 5.4.3. Nonlinearity of polarization curves -- 5.5. Applications of Linear Polarization Technique-Estimation of Corrosion Rates -- 5.6. Corrosion Potential Measurements as a Function of Time (OCP vs. Time) -- 5.7. Tafel Extrapolation Method -- 5.7.1. Principles of the Tafel extrapolation method -- 5.7.2. Tafel extrapolation procedure -- 5.8. Potentiodynamic Polarization Measurements -- 5.9. Electrochemical Impedance Spectroscopy -- 5.9.1. Principles of the method -- 5.9.2. Expression for impedance of the R-L-C series circuit -- 5.9.3. AC impedance plots: impedance spectra with their associated equivalent circuits -- 5.9.4. Application of electrochemical impedance to corrosion studies -- 5.10. Advantages and Limitations of EIS -- 5.11. Recent Corrosion Research -- Exercises -- References -- Chapter 6: Galvanic Corrosion -- 6.1. Definition of Galvanic Corrosion -- 6.2. Galvanic Series -- 6.3. Experimental Measurements.

6.3.1. Polarization in galvanic couples -- 6.3.2. Zero resistance ammeter -- 6.3.3. Scanning vibrating electrode technique -- 6.4. Prevention of Galvanic Corrosion -- 6.5. Theoretical Aspects -- 6.5.1. Effect of exchange current density on galvanic current in Fe-Zn galvanic couple -- 6.5.2. Differential aeration: oxygen concentration cell -- 6.6. Testing Methods in Galvanic Corrosion -- 6.6.1. Scanning vibrating electrode technique -- 6.6.2. Shadowgraphy and Mach-Zehnder interferometry -- 6.6.3. Other methods -- 6.7. Automotive Applications -- 6.8. Galvanic Corrosion in Concrete Structures -- 6.9. Refrigeration -- 6.10. Dental Applications -- 6.11. Corrosion of Microstructures -- 6.12. Galvanic Coatings -- 6.13. Numerical Modeling of Galvanic Corrosion Couples -- Exercises -- References -- Chapter 7: Pitting and Crevice Corrosion -- 7.1. Introduction -- 7.2. Critical Pitting Potential and Evaluation of Pitting Corrosion -- 7.3. Mechanism of Pitting Corrosion -- 7.3.1. Passive film breakdown -- 7.3.2. Autocatalytic mechanism of pit growth -- 7.3.2.1. Formation of nucleated pits -- 7.3.2.2. Propagation pit growth -- 7.3.2.3. Pit arrest -- 7.3.2.4. MnS inclusions -- 7.4. Effect of Temperature -- 7.5. Effects of Alloy Composition on Pitting Corrosion -- 7.6. Inhibition of Pitting Corrosion -- 7.7. Crevice Corrosion -- 7.7.1. Mechanism of crevice corrosion -- 7.7.2. Inhibition of crevice corrosion -- 7.8. Filiform Corrosion -- 7.9. Prevention -- Exercises -- References -- Chapter 8: Hydrogen Permeation and Hydrogen-Induced Cracking -- 8.1. Introduction -- 8.2. Hydrogen Evolution Reaction -- 8.2.1. Kinetics of HER -- 8.2.2. Theoretical diffusion solution -- 8.2.3. Evaluation of diffusivity -- 8.2.4. Basic model for hydrogen permeation: the Iyer-Pickering-Zamanzadeh (IPZ) model -- 8.2.5. Experimental determination of hydrogen permeation parameters.

8.2.6. Evaluation of rate constants for hydrogen absorption and diffusivity into metals -- 8.3. Hydrogen-Induced Damage -- 8.3.1. Hydrogen-induced cracking -- 8.3.2. Hydrogen embrittlement -- 8.3.3. Hydrogen blistering -- 8.3.4. Hydrogen stress cracking -- 8.3.5. Recent studies on hydrogen-induced damage -- 8.4. Preventing Hydrogen Damage in Metals -- Exercises -- List of parameters: -- List of parameters: -- List of parameters: -- Use the following parameters: -- References -- Chapter 9: Stress Corrosion Cracking -- 9.1. Definition and Characteristics of Stress Corrosion Cracking -- 9.2. Testing Methods -- 9.2.1. Constant deformation tests -- 9.2.1.1. Two-point loaded specimens -- 9.2.1.2. Three-point loaded specimen -- 9.2.1.3. Four-point loaded specimen -- 9.2.1.4. Double beam specimen -- 9.2.2. Sustained load tests -- 9.2.3. Slow strain rate tensile testing -- 9.3. Fracture Mechanics Testing -- 9.3.1. Test methods -- 9.3.2. Precracked cantilever beam specimens -- 9.3.3. Linearly increasing stress test -- 9.4. Examples of Stress Corrosion Cracking -- 9.5. SCC Models -- 9.5.1. Film rupture model -- 9.5.2. Fracture-induced cleavage model -- 9.5.3. Localized surface plasticity model -- 9.5.4. Atomic surface mobility model -- 9.6. Metallurgy of Stress Corrosion Cracking -- 9.6.1. Solid solution composition -- 9.6.2. Grain boundary segregation -- 9.6.3. Alloy phase transformation and associated solute depleted zones -- 9.6.4. Duplex structures -- 9.6.5. Cold work -- 9.7. Electrochemical Effects -- 9.8. Hydrogen Embrittlement -- 9.9. Corrosion Fatigue Cracking -- 9.10. Prevention of Stress Corrosion Cracking -- Exercises -- References -- Chapter 10: Atmospheric Corrosion -- 10.1. Introduction -- 10.2. Atmospheric Classification -- 10.3. Electrochemical Mechanism -- 10.3.1. Corrosion of iron and low alloy steels.

10.4. Factors Affecting Atmospheric Corrosion.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.