ORPP logo
Image from Google Jackets

Bioseparations Science and Engineering.

By: Contributor(s): Material type: TextTextSeries: Topics in Chemical Engineering SeriesPublisher: Oxford : Oxford University Press, Incorporated, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (577 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780190213732
Subject(s): Genre/Form: Additional physical formats: Print version:: Bioseparations Science and EngineeringDDC classification:
  • 660/.2842
LOC classification:
  • TP248.25.S47.B567 2
Online resources:
Contents:
Cover -- Bioseparations Science and Engineering -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction to Bioproducts and Bioseparations -- 1.1 Instructional Objectives -- 1.2 Broad Classification of Bioproducts -- 1.3 Small Biomolecules -- 1.3.1 Primary Metabolites -- 1.3.2 Secondary Metabolites -- 1.3.3 Summary of Small Biomolecules -- 1.4 Macromolecules: Proteins -- 1.4.1 Primary Structure -- 1.4.2 Secondary Structure -- 1.4.3 Tertiary Structure -- Example 1.1 Effect of a Reducing Agent on Protein Structure and Mobility -- 1.4.4 Quaternary Structure -- 1.4.5 Prosthetic Groups and Hybrid Molecules -- 1.4.6 Functions and Commercial Uses of Proteins -- 1.4.7 Stability of Proteins -- 1.4.8 Recombinant Protein Expression -- 1.5 Macromolecules: Nucleic Acids and Oligonucleotides -- 1.6 Macromolecules: Polysaccharides -- 1.7 Particulate Products -- 1.8 Introduction to Bioseparations: Engineering Analysis -- 1.8.1 Stages of Downstream Processing -- Example 1.2 Initial Selection of Purification Steps -- 1.8.2 Basic Principles of Engineering Analysis -- 1.8.3 Process and Product Quality -- 1.8.4 Criteria for Process Development -- 1.9 The Route to Market -- 1.9.1 The Chemical and Applications Range of the Bioproduct -- 1.9.2 Documentation of Pharmaceutical Bioproducts -- 1.9.3 GLP and cGMP -- 1.9.4 Formulation -- 1.10 Summary -- Nomenclature -- Problems -- References -- 2 Analytical Methods and Bench Scale Preparative Bioseparations -- 2.1 Instructional Objectives -- 2.2 Specifications -- 2.3 Assay Attributes -- 2.3.1 Precision -- 2.3.2 Accuracy -- 2.3.3 Specificity -- 2.3.4 Linearity, Limit of Detection, and Limit of Quantitation -- 2.3.5 Range -- 2.3.6 Robustness -- 2.4 Analysis of Biological Activity -- 2.4.1 Animal Model Assays -- 2.4.2 Cell-Line-Derived Bioassays -- 2.4.3 In vitro Biochemical Assays.
Example 2.1 Coupled Enzyme Assay for Alcohol Oxidase -- 2.5 Analysis of Purity -- 2.5.1 Electrophoretic Analysis -- Example 2.2 Estimation of the Maximum Temperature in an Electrophoresis Gel -- 2.5.2 High-Performance Liquid Chromatography (HPLC) -- 2.5.3 Mass Spectrometry -- 2.5.4 Coupling of HPLC with Mass Spectrometry -- 2.5.5 Ultraviolet Absorbance -- Example 2.3 Determination of Molar Absorptivity -- 2.5.6 CHNO/Amino Acid Analysis (AAA) -- Example 2.4 Calculations Based on CHNO Analysis -- 2.5.7 Protein Assays -- 2.5.8 Enzyme-Linked Immunosorbent Assay -- 2.5.9 Gas Chromatography -- 2.5.10 DNA Hybridization -- 2.5.11 ICP/MS (AES) -- 2.5.12 Dry Weight -- 2.6 Microbiology Assays -- 2.6.1 Sterility -- 2.6.2 Bioburden -- 2.6.3 Endotoxin -- 2.6.4 Virus, Mycoplasma, and Phage -- 2.7 Bench Scale Preparative Separations -- 2.7.1 Preparative Electrophoresis -- 2.7.2 Magnetic Bioseparations -- 2.8 Summary -- Nomenclature -- Problems -- References -- 3 Cell Lysis and Flocculation -- 3.1 Instructional Objectives -- 3.2 Some Elements of Cell Structure -- 3.2.1 Prokaryotic Cells -- 3.2.2 Eukaryotic Cells -- 3.3 Cell Lysis -- 3.3.1 Osmotic and Chemical Cell Lysis -- 3.3.2 Mechanical Methods of Lysis -- 3.4 Flocculation -- 3.4.1 The Electric Double Layer -- Example 3.1 Dependence of the Debye Radius on the Type of Electrolyte -- 3.4.2 Forces Between Particles and Flocculation by Electrolytes -- Example 3.2 Sensitivity of Critical Flocculation Concentration to Temperature and Counterion Charge Number -- 3.4.3 The Schulze-Hardy Rule -- 3.4.4 Flocculation Rate -- 3.4.5 Polymeric Flocculants -- 3.5 Summary -- Nomenclature -- Problems -- References -- 4 Filtration -- 4.1 Instructional Objectives -- 4.2 Filtration Principles -- 4.2.1 Conventional Filtration -- Example 4.1 Batch Filtration -- 4.2.2 Crossflow Filtration.
Example 4.2 Concentration Polarization in Ultrafiltration -- Example 4.3 Comparison of Mass Transfer Coefficient Calculated by Boundary Layer Theory Versus by Shear-Induced Diffusion Theory -- 4.3 Filter Media and Equipment -- 4.3.1 Conventional Filtration -- 4.3.2 Crossflow Filtration -- 4.4 Membrane Fouling -- 4.5 Scale-up and Design of Filtration Systems -- 4.5.1 Conventional Filtration -- Example 4.4 Rotary Vacuum Filtration -- Example 4.5 Washing of a Rotary Vacuum Filter Cake -- 4.5.2 Crossflow Filtration -- Example 4.6 Diafiltration Mode in Crossflow Filtration -- 4.6 Summary -- Nomenclature -- Problems -- References -- 5 Sedimentation -- 5.1 Instructional Objectives -- 5.2 Sedimentation Principles -- 5.2.1 Equation of Motion -- 5.2.2 Sensitivities -- 5.3 Methods for Analysis of Sedimentation -- 5.3.1 Equilibrium Sedimentation -- 5.3.2 Sedimentation Coefficient -- Example 5.1 Application of the Sedimentation Coefficient -- 5.3.3 Equivalent Time -- Example 5.2 Scale-up Based on Equivalent Time -- 5.3.4 Sigma Analysis -- 5.4 Production Centrifuges: Comparison and Engineering Analysis -- 5.4.1 Tubular Bowl Centrifuge -- Example 5.3 Complete Recovery of Bacterial Cells in a Tubular Bowl Centrifuge -- 5.4.2 Disk Centrifuge -- 5.5 Ultracentrifugation -- 5.5.1 Determination of Molecular Weight -- 5.6 Flocculation and Sedimentation -- 5.7 Sedimentation at Low Accelerations -- 5.7.1 Diffusion, Brownian Motion -- 5.7.2 Isothermal Settling -- 5.7.3 Convective Motion and Péclet Analysis -- 5.7.4 Inclined Sedimentation -- 5.7.5 Field-Flow Fractionation -- 5.8 Centrifugal Elutriation -- 5.9 Summary -- Nomenclature -- Problems -- References -- 6 Extraction -- 6.1 Instructional Objectives -- 6.2 Extraction Principles -- 6.2.1 Phase Separation and Partitioning Equilibria -- 6.2.2 Countercurrent Stage Calculations.
Example 6.1 Separation of a Bioproduct and an Impurity by Countercurrent Extraction -- Example 6.2 Effect of Solvent Rate in Countercurrent Staged Extraction of an Antibiotic -- 6.3 Scale-up and Design of Extractors -- 6.3.1 Reciprocating-Plate Extraction Columns -- Example 6.3 Scale-up of a Reciprocating-Plate Extraction Column -- 6.3.2 Centrifugal Extractors -- Example 6.4 Increase in Feed Rate to a Podbielniak Centrifugal Extractor -- 6.4 Summary -- Nomenclature -- Problems -- References -- 7 Liquid Chromatography and Adsorption -- 7.1 Instructional Objectives -- 7.2 Adsorption Equilibrium -- 7.3 Adsorption Column Dynamics -- 7.3.1 Fixed-Bed Adsorption -- Example 7.1 Determination of the Mass Transfer Coefficient from Adsorption Breakthrough Data -- 7.3.2 Agitated-Bed Adsorption -- 7.4 Chromatography Column Dynamics -- 7.4.1 Plate Models -- 7.4.2 Moment Analysis -- 7.4.3 Chromatography Column Mass Balance with Negligible Dispersion -- Example 7.2 Chromatographic Separation of Two Solutes -- Example 7.3 Calculation of the Shock Wave Velocity for a Nonlinear Isotherm -- Example 7.4 Calculation of the Elution Profile -- 7.4.4 Dispersion Effects in Chromatography -- 7.4.5 Computer Simulation of Chromatography Considering Axial Dispersion, Fluid-Phase Mass Transfer, Intraparticle Diffusion, and Nonlinear Equilibrium -- 7.4.6 Gradients and Modifiers -- Example 7.5 Equilibrium for a Protein Anion in the Presence of Chloride Ion -- 7.5 Membrane Chromatography -- Example 7.6 Comparison of Time for Diffusion Mass Transfer in Conventional Chromatography and Membrane Chromatography -- 7.6 Simulated Moving Bed Chromatography -- 7.7 Adsorbent Types -- 7.7.1 Silica-Based Resins -- 7.7.2 Polymer-Based Resins -- 7.7.3 Ion Exchange Resins -- 7.7.4 Reversed-Phase Chromatography -- 7.7.5 Hydrophobic Interaction Chromatography.
7.7.6 Affinity Chromatography -- 7.7.7 Immobilized Metal Affinity Chromatography (IMAC) -- 7.7.8 Size Exclusion Chromatography -- 7.8 Particle Size and Pressure Drop in Fixed Beds -- 7.9 Equipment -- 7.9.1 Columns -- 7.9.2 Chromatography Column Packing Procedures -- 7.9.3 Detectors -- 7.9.4 Chromatography System Fluidics -- 7.10 Scale-up -- 7.10.1 Adsorption -- Example 7.7 Scale-up of the Fixed-Bed Adsorption of a Pharmaceutical Product -- 7.10.2 Chromatography -- Example 7.8 Scale-up of a Protein Chromatography -- Example 7.9 Scale-up of Protein Chromatography Using Standard Column Sizes -- Example 7.10 Scale-up of Elution Buffer Volumes in Protein Chromatography -- Example 7.11   Consideration of Pressure Drop in Column Scaling -- 7.11 Summary -- Nomenclature -- Problems -- References -- 8 Precipitation -- 8.1 Instructional Objectives -- 8.2 Protein Solubility -- 8.2.1 Structure and Size -- 8.2.2 Charge -- 8.2.3 Solvent -- Example 8.1 Salting Out of a Protein with Ammonium Sulfate -- 8.3 Precipitate Formation Phenomena -- 8.3.1 Initial Mixing -- 8.3.2 Nucleation -- 8.3.3 Growth Governed by Diffusion -- Example 8.2 Calculation of Concentration of Nuclei in a Protein Precipitation -- Example 8.3 Diffusion-Limited Growth of Particles -- 8.3.4 Growth Governed by Fluid Motion -- Example 8.4 Growth of Particles Limited by Fluid Motion -- 8.3.5 Precipitate Breakage -- 8.3.6 Precipitate Aging -- 8.4 Particle Size Distribution in a Continuous-Flow Stirred Tank Reactor -- Example 8.5 Dependence of Population Density on Particle Size and Residence Time in a CSTR -- 8.5 Methods of Precipitation -- 8.6 Design of Precipitation Systems -- 8.7 Summary -- Nomenclature -- Problems -- References -- 9 Crystallization -- 9.1 Instructional Objectives -- 9.2 Crystallization Principles -- 9.2.1 Crystals -- 9.2.2 Nucleation -- 9.2.3 Crystal Growth.
9.2.4 Crystallization Kinetics from Batch Experiments.
Summary: An updated edition of a comprehensive and authoritative chemical engineering textbook on bioseparations science, updated to include new information on topics like moment analysis, chromatography, and evaporation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Bioseparations Science and Engineering -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction to Bioproducts and Bioseparations -- 1.1 Instructional Objectives -- 1.2 Broad Classification of Bioproducts -- 1.3 Small Biomolecules -- 1.3.1 Primary Metabolites -- 1.3.2 Secondary Metabolites -- 1.3.3 Summary of Small Biomolecules -- 1.4 Macromolecules: Proteins -- 1.4.1 Primary Structure -- 1.4.2 Secondary Structure -- 1.4.3 Tertiary Structure -- Example 1.1 Effect of a Reducing Agent on Protein Structure and Mobility -- 1.4.4 Quaternary Structure -- 1.4.5 Prosthetic Groups and Hybrid Molecules -- 1.4.6 Functions and Commercial Uses of Proteins -- 1.4.7 Stability of Proteins -- 1.4.8 Recombinant Protein Expression -- 1.5 Macromolecules: Nucleic Acids and Oligonucleotides -- 1.6 Macromolecules: Polysaccharides -- 1.7 Particulate Products -- 1.8 Introduction to Bioseparations: Engineering Analysis -- 1.8.1 Stages of Downstream Processing -- Example 1.2 Initial Selection of Purification Steps -- 1.8.2 Basic Principles of Engineering Analysis -- 1.8.3 Process and Product Quality -- 1.8.4 Criteria for Process Development -- 1.9 The Route to Market -- 1.9.1 The Chemical and Applications Range of the Bioproduct -- 1.9.2 Documentation of Pharmaceutical Bioproducts -- 1.9.3 GLP and cGMP -- 1.9.4 Formulation -- 1.10 Summary -- Nomenclature -- Problems -- References -- 2 Analytical Methods and Bench Scale Preparative Bioseparations -- 2.1 Instructional Objectives -- 2.2 Specifications -- 2.3 Assay Attributes -- 2.3.1 Precision -- 2.3.2 Accuracy -- 2.3.3 Specificity -- 2.3.4 Linearity, Limit of Detection, and Limit of Quantitation -- 2.3.5 Range -- 2.3.6 Robustness -- 2.4 Analysis of Biological Activity -- 2.4.1 Animal Model Assays -- 2.4.2 Cell-Line-Derived Bioassays -- 2.4.3 In vitro Biochemical Assays.

Example 2.1 Coupled Enzyme Assay for Alcohol Oxidase -- 2.5 Analysis of Purity -- 2.5.1 Electrophoretic Analysis -- Example 2.2 Estimation of the Maximum Temperature in an Electrophoresis Gel -- 2.5.2 High-Performance Liquid Chromatography (HPLC) -- 2.5.3 Mass Spectrometry -- 2.5.4 Coupling of HPLC with Mass Spectrometry -- 2.5.5 Ultraviolet Absorbance -- Example 2.3 Determination of Molar Absorptivity -- 2.5.6 CHNO/Amino Acid Analysis (AAA) -- Example 2.4 Calculations Based on CHNO Analysis -- 2.5.7 Protein Assays -- 2.5.8 Enzyme-Linked Immunosorbent Assay -- 2.5.9 Gas Chromatography -- 2.5.10 DNA Hybridization -- 2.5.11 ICP/MS (AES) -- 2.5.12 Dry Weight -- 2.6 Microbiology Assays -- 2.6.1 Sterility -- 2.6.2 Bioburden -- 2.6.3 Endotoxin -- 2.6.4 Virus, Mycoplasma, and Phage -- 2.7 Bench Scale Preparative Separations -- 2.7.1 Preparative Electrophoresis -- 2.7.2 Magnetic Bioseparations -- 2.8 Summary -- Nomenclature -- Problems -- References -- 3 Cell Lysis and Flocculation -- 3.1 Instructional Objectives -- 3.2 Some Elements of Cell Structure -- 3.2.1 Prokaryotic Cells -- 3.2.2 Eukaryotic Cells -- 3.3 Cell Lysis -- 3.3.1 Osmotic and Chemical Cell Lysis -- 3.3.2 Mechanical Methods of Lysis -- 3.4 Flocculation -- 3.4.1 The Electric Double Layer -- Example 3.1 Dependence of the Debye Radius on the Type of Electrolyte -- 3.4.2 Forces Between Particles and Flocculation by Electrolytes -- Example 3.2 Sensitivity of Critical Flocculation Concentration to Temperature and Counterion Charge Number -- 3.4.3 The Schulze-Hardy Rule -- 3.4.4 Flocculation Rate -- 3.4.5 Polymeric Flocculants -- 3.5 Summary -- Nomenclature -- Problems -- References -- 4 Filtration -- 4.1 Instructional Objectives -- 4.2 Filtration Principles -- 4.2.1 Conventional Filtration -- Example 4.1 Batch Filtration -- 4.2.2 Crossflow Filtration.

Example 4.2 Concentration Polarization in Ultrafiltration -- Example 4.3 Comparison of Mass Transfer Coefficient Calculated by Boundary Layer Theory Versus by Shear-Induced Diffusion Theory -- 4.3 Filter Media and Equipment -- 4.3.1 Conventional Filtration -- 4.3.2 Crossflow Filtration -- 4.4 Membrane Fouling -- 4.5 Scale-up and Design of Filtration Systems -- 4.5.1 Conventional Filtration -- Example 4.4 Rotary Vacuum Filtration -- Example 4.5 Washing of a Rotary Vacuum Filter Cake -- 4.5.2 Crossflow Filtration -- Example 4.6 Diafiltration Mode in Crossflow Filtration -- 4.6 Summary -- Nomenclature -- Problems -- References -- 5 Sedimentation -- 5.1 Instructional Objectives -- 5.2 Sedimentation Principles -- 5.2.1 Equation of Motion -- 5.2.2 Sensitivities -- 5.3 Methods for Analysis of Sedimentation -- 5.3.1 Equilibrium Sedimentation -- 5.3.2 Sedimentation Coefficient -- Example 5.1 Application of the Sedimentation Coefficient -- 5.3.3 Equivalent Time -- Example 5.2 Scale-up Based on Equivalent Time -- 5.3.4 Sigma Analysis -- 5.4 Production Centrifuges: Comparison and Engineering Analysis -- 5.4.1 Tubular Bowl Centrifuge -- Example 5.3 Complete Recovery of Bacterial Cells in a Tubular Bowl Centrifuge -- 5.4.2 Disk Centrifuge -- 5.5 Ultracentrifugation -- 5.5.1 Determination of Molecular Weight -- 5.6 Flocculation and Sedimentation -- 5.7 Sedimentation at Low Accelerations -- 5.7.1 Diffusion, Brownian Motion -- 5.7.2 Isothermal Settling -- 5.7.3 Convective Motion and Péclet Analysis -- 5.7.4 Inclined Sedimentation -- 5.7.5 Field-Flow Fractionation -- 5.8 Centrifugal Elutriation -- 5.9 Summary -- Nomenclature -- Problems -- References -- 6 Extraction -- 6.1 Instructional Objectives -- 6.2 Extraction Principles -- 6.2.1 Phase Separation and Partitioning Equilibria -- 6.2.2 Countercurrent Stage Calculations.

Example 6.1 Separation of a Bioproduct and an Impurity by Countercurrent Extraction -- Example 6.2 Effect of Solvent Rate in Countercurrent Staged Extraction of an Antibiotic -- 6.3 Scale-up and Design of Extractors -- 6.3.1 Reciprocating-Plate Extraction Columns -- Example 6.3 Scale-up of a Reciprocating-Plate Extraction Column -- 6.3.2 Centrifugal Extractors -- Example 6.4 Increase in Feed Rate to a Podbielniak Centrifugal Extractor -- 6.4 Summary -- Nomenclature -- Problems -- References -- 7 Liquid Chromatography and Adsorption -- 7.1 Instructional Objectives -- 7.2 Adsorption Equilibrium -- 7.3 Adsorption Column Dynamics -- 7.3.1 Fixed-Bed Adsorption -- Example 7.1 Determination of the Mass Transfer Coefficient from Adsorption Breakthrough Data -- 7.3.2 Agitated-Bed Adsorption -- 7.4 Chromatography Column Dynamics -- 7.4.1 Plate Models -- 7.4.2 Moment Analysis -- 7.4.3 Chromatography Column Mass Balance with Negligible Dispersion -- Example 7.2 Chromatographic Separation of Two Solutes -- Example 7.3 Calculation of the Shock Wave Velocity for a Nonlinear Isotherm -- Example 7.4 Calculation of the Elution Profile -- 7.4.4 Dispersion Effects in Chromatography -- 7.4.5 Computer Simulation of Chromatography Considering Axial Dispersion, Fluid-Phase Mass Transfer, Intraparticle Diffusion, and Nonlinear Equilibrium -- 7.4.6 Gradients and Modifiers -- Example 7.5 Equilibrium for a Protein Anion in the Presence of Chloride Ion -- 7.5 Membrane Chromatography -- Example 7.6 Comparison of Time for Diffusion Mass Transfer in Conventional Chromatography and Membrane Chromatography -- 7.6 Simulated Moving Bed Chromatography -- 7.7 Adsorbent Types -- 7.7.1 Silica-Based Resins -- 7.7.2 Polymer-Based Resins -- 7.7.3 Ion Exchange Resins -- 7.7.4 Reversed-Phase Chromatography -- 7.7.5 Hydrophobic Interaction Chromatography.

7.7.6 Affinity Chromatography -- 7.7.7 Immobilized Metal Affinity Chromatography (IMAC) -- 7.7.8 Size Exclusion Chromatography -- 7.8 Particle Size and Pressure Drop in Fixed Beds -- 7.9 Equipment -- 7.9.1 Columns -- 7.9.2 Chromatography Column Packing Procedures -- 7.9.3 Detectors -- 7.9.4 Chromatography System Fluidics -- 7.10 Scale-up -- 7.10.1 Adsorption -- Example 7.7 Scale-up of the Fixed-Bed Adsorption of a Pharmaceutical Product -- 7.10.2 Chromatography -- Example 7.8 Scale-up of a Protein Chromatography -- Example 7.9 Scale-up of Protein Chromatography Using Standard Column Sizes -- Example 7.10 Scale-up of Elution Buffer Volumes in Protein Chromatography -- Example 7.11   Consideration of Pressure Drop in Column Scaling -- 7.11 Summary -- Nomenclature -- Problems -- References -- 8 Precipitation -- 8.1 Instructional Objectives -- 8.2 Protein Solubility -- 8.2.1 Structure and Size -- 8.2.2 Charge -- 8.2.3 Solvent -- Example 8.1 Salting Out of a Protein with Ammonium Sulfate -- 8.3 Precipitate Formation Phenomena -- 8.3.1 Initial Mixing -- 8.3.2 Nucleation -- 8.3.3 Growth Governed by Diffusion -- Example 8.2 Calculation of Concentration of Nuclei in a Protein Precipitation -- Example 8.3 Diffusion-Limited Growth of Particles -- 8.3.4 Growth Governed by Fluid Motion -- Example 8.4 Growth of Particles Limited by Fluid Motion -- 8.3.5 Precipitate Breakage -- 8.3.6 Precipitate Aging -- 8.4 Particle Size Distribution in a Continuous-Flow Stirred Tank Reactor -- Example 8.5 Dependence of Population Density on Particle Size and Residence Time in a CSTR -- 8.5 Methods of Precipitation -- 8.6 Design of Precipitation Systems -- 8.7 Summary -- Nomenclature -- Problems -- References -- 9 Crystallization -- 9.1 Instructional Objectives -- 9.2 Crystallization Principles -- 9.2.1 Crystals -- 9.2.2 Nucleation -- 9.2.3 Crystal Growth.

9.2.4 Crystallization Kinetics from Batch Experiments.

An updated edition of a comprehensive and authoritative chemical engineering textbook on bioseparations science, updated to include new information on topics like moment analysis, chromatography, and evaporation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.