Soft and Stiffness-Controllable Robotics Solutions for Minimally Invasive Surgery : The STIFF-FLOP Approach.
Material type:
- text
- computer
- online resource
- 9781000799330
- 617.9178
- RD33.53 .S648 2018
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Part I: Development of Silicone-Based Stiffness Controllable Actuators -- 1: Technology Selection -- 1.1 Manipulator Specifications -- 1.1.1 Medical Requirements -- 1.1.2 Technical Specifications -- 1.2 Technological Overview of Different Actuation Strategies -- 1.2.1 Active Motion Technology Survey -- 1.2.1.1 Electromagnetic Motors -- 1.2.1.2 Electro Active Polymers -- 1.2.1.3 Shape Memory Alloys -- 1.2.1.4 Shape Memory Polymers -- 1.2.1.5 Flexible Fluidic Actuator -- 1.2.2 Discussion and Choice of Active Motion Technology -- 1.2.3 Stiffness Variation Technology Survey -- 1.2.4 Comparison and Choice -- References -- 2: Design of the Multi-Module Manipulator -- 2.1 The Design of the Single Module -- 2.1.1 Active Motion -- 2.1.2 Stiffness variation -- 2.2 Connection of Multiple Modules -- 2.3 Complete Characterization of the 2-Module Manipulator -- 2.3.1 Fabrication -- 2.3.2 Workspace Evaluation -- 2.3.2.1 Methods -- 2.3.2.2 Results -- 2.3.3 Junction Characterization -- 2.3.3.1 Methods -- 2.3.3.2 Results -- 2.3.4 Stiffness Characterization -- 2.3.4.1 Methods -- 2.3.4.2 Results -- 2.3.5 Combined Force and Stiffening Experiments -- 2.3.5.1 Methods -- 2.3.5.2 Results -- References -- 3: Soft Manipulator Actuation Module - with Reinforced Chambers -- 3.1 Introduction -- 3.1.1 Change of the Chamber Cross Section Area -- 3.1.2 Chamber Cross Section Center Displacement -- 3.1.3 Friction between the Silicone Body and Braided Sleeve -- 3.1.4 Sensor Interaction -- 3.2 Proposed Improvements -- 3.2.1 Possible Solutions -- 3.2.2 Design -- 3.3 Manufacturing -- 3.4 Tests -- 3.4.1 Pneumatic Actuation -- 3.4.2 Hydraulic Actuation -- 3.4.3 External Force.
3.5 Stiffening Mechanism -- 3.5.1 Basic Module Design -- 3.5.2 Optimised Module Design -- 3.6 Conclusions -- Acknowledgement -- References -- 4: Antagonistic Actuation Principle for a Silicone-Based Soft Manipulator -- 4.1 Introduction -- 4.2 Background -- 4.3 Bio-Inspiration and Contributions -- 4.4 Integration of the Antagonistic Stiffening Mechanism -- 4.4.1 Embedding Tendon-Driven Actuation into a STIFF-FLOP Segment -- 4.4.2 Setup of the Antagonistic Actuation Architecture -- 4.5 Test Protocol, Experimental Results, and Discussion -- 4.5.1 Methodology -- 4.5.2 Experimental Results -- 4.5.3 Discussion -- 4.6 Conclusions -- 4.7 Funding -- References -- 5: Smart Hydrogel for Stiffness Controllable Continuum Manipulators: A Conceptual Design -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Active Hydrogel Preparation -- 5.2.2 Active Hydrogel Properties and Ion Pattern Printing -- 5.3 Experiments and Discussion -- 5.3.1 Swelling Test -- 5.3.2 Stiffness Test -- 5.4 Conclusion and Future Works -- References -- Part II: Creation and Integration of Multiple Sensing Modalities -- 6: Optical Force and Torque Sensor for Flexible Robotic Manipulators -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Sensor Design Rational -- 6.2.2 Sensor Configurations -- 6.3 Results and Discussion -- 6.4 Conclusions -- References -- 7: Pose Sensor for STIFF-FLOP Manipulator -- 7.1 Introduction -- 7.2 Design of the Pose-Sensing System -- 7.2.1 Pose-Sensing in a One Segment STIFF-FLOP Arm -- 7.2.2 The Flexible Steiner Chain Section -- 7.2.3 Design of a Low-Friction Retractable Distance Modulation Array -- 7.2.3.1 Loopback Design of the Optical System -- 7.2.3.2 Steel Spring-Needle Double Slider -- 7.3 Fabrication and Assembly of the Pose-Sensing System -- 7.4 Sensor Calibration and Benchmarking.
7.5 Calculation of the Bending Curvature in a Two-Segment Arm Based on Collocated Cables -- 7.6 Conclusion -- Acknowledgment -- References -- 8: The STIFF-FLOP Vision System -- 8.1 Introduction -- 8.2 Optical Tracking of the STIFF-FLOP Arm -- 8.2.1 Axios Measurement System Cambar B2 -- 8.2.2 The Endoscopic Camera System -- 8.2.3 Image Processing on Endoscopic Camera Images -- 8.2.3.1 Removal of Specular Reflections -- 8.2.3.2 Improvement of the Dynamic Range -- 8.2.4 Detection of the STIFF-FLOP Arm in the Camera Image using Machine Learning Algorithms -- 8.2.5 Detection of the Module Connection Points of the STIFF-FLOP Arm -- 8.2.6 Registration of the Endoscopic Camera Image to the STIFF-FLOP Arm -- 8.3 Integration and Validation of the Implemented Methods -- 8.4 Conclusion -- Acknowledgements -- References -- Part III: Control, Kinematics and Navigation -- 9: Inverse Kinematics Methods for Flexible Arm Control -- 9.1 Introduction -- 9.1.1 On the Inverse Kinematics Problem for Continuum Robots -- 9.1.2 Single Insertion Point Constraint in Minimally Invasive Surgery -- 9.1.3 Contributions Presented -- 9.2 Inverse Kinematics Framework -- 9.2.1 General Framework -- 9.2.2 Application to the STIFF-FLOP Structure -- 9.2.3 Configuration Space of the Flexible Modules -- 9.2.4 STIFF-FLOP Base Motion with Single Insertion Point Constraint -- 9.2.5 Secondary Tasks through Redundancy -- 9.2.5.1 Control of the Chamber Lengths -- 9.2.5.2 Control of the Interaction with the Environment -- 9.3 Inverse Kinematic Experimentations -- 9.3.1 Fixed Base, Various Module Representation -- 9.3.2 Inverse Kinematics Involving the Base under Single Point Insertion Constraint -- 9.3.3 Illustration of the Secondary Tasks -- 9.4 Conclusion -- References -- 10: Modelling and Position Control of the Soft Manipulator -- 10.1 Introduction -- 10.2 Assumptions.
10.3 Single Segment Model -- 10.4 External Forces -- 10.5 Analytical Issues -- 10.6 Inverse Kinematics -- 10.7 Conclusion -- Acknowledgments -- References -- 11: Reactive Navigation for Continuum Manipulator in Unknown Environments -- 11.1 Introduction -- 11.2 Modeling and Pose Estimation -- 11.2.1 Kinematic Model -- 11.2.2 Pose Estimation -- 11.3 Reactive Navigation -- 11.3.1 Electric-Field-Based Navigation -- 11.3.2 Magnetic-Field-Based Navigation -- 11.3.3 The Complete Algorithm -- 11.4 Results and Discussion -- 11.4.1 Discussion -- 11.5 Conclusion -- Acknowledgment -- References -- Part IV: Human Interface -- 12: The Design of a Functional STIFF-FLOP Robot Operator's Console -- 12.1 Introduction -- 12.2 Design of Improved Haptic Console -- 12.2.1 Second Version of STIFF-FLOP Console -- 12.3 Conclusion -- Acknowledgments -- References -- 13: Haptic Feedback Modalities for Minimally Invasive Surgery -- 13.1 Introduction -- 13.2 Force Feedback -- 13.2.1 Experimental Setup to Validate the Experimental Tele-manipulator and the Force Feedback Platform -- 13.2.2 Evaluation of the Experimental Tele-Manipulator and Force Feedback Platform -- 13.3 Visual Stiffness Feedback -- 13.3.1 Experimental Setup to Validate the Concept of Visual Stiffness Feedback -- 13.3.2 Evaluation of Visual Stiffness Feedback -- 13.4 Pseudo-Haptic Tissue Stiffness Feedback -- 13.4.1 The Concept of Pseudo-Haptic Tissue Stiffness Feedback -- 13.4.2 The Combined Pseudo-Haptic and Force Feedback -- 13.4.3 Evaluation of Pseudo-Haptic Stiffness Feedback -- 13.5 Haptic Feedback Actuators -- 13.5.1 Experimental Setup to Validate the Finger-Tip Haptic Feedback Actuators -- 13.5.2 Evaluation Results of Finger-Tip Haptic Feedback Actuators -- 13.6 Conclusion -- Acknowledgments -- References -- 14: Force Feedback Sleeve Using Pneumatic and Micro Vibration Actuators -- 14.1 Introduction.
14.2 Application of the Pneumatic Impact Interaction -- 14.3 Control -- 14.4 Applications of Electric Vibration Motors -- 14.5 Conclusion -- Acknowledgments -- References -- 15: Representation of Distributed Haptic Feedback Given via Vibro-tactile Actuator Arrays -- 15.1 Introduction -- 15.2 Materials and Methods -- 15.2.1 Haptic Primitive Templates Generation -- 15.2.2 Experimental Procedure -- 15.2.3 Data Processing and Statistical Analysis -- 15.2.4 Experiment 1: To Understand How Humans Generalize a Gaussian Pattern in Scaling and Shifting -- 15.2.5 Experiment 2(a): To Understand How Humans can Recognize Trained Templates When they are Presented in a Random Order -- 15.2.6 Experiment 2(b): To Understand How Humans Can Recognize Trained Inverse Templates When They are Presented in a Random Order -- 15.2.7 Experiment 3: To Understand How Humans can Recognize Random Linear Combinations of Trained Primitive Templates Given by a Set of Discrete Vibro-Actuators on the Forearm -- 15.3 Results -- 15.3.1 Experiment 1 -- 15.3.2 Experiment 2(a) -- 15.3.3 Experiment 2(b) -- 15.3.4 Experiment 3 -- 15.4 Discussion -- Acknowledgment -- References -- 16: RobinHand Haptic Device -- 16.1 Introduction -- 16.2 The User Interface RobinHand -- 16.3 RobinHand in STIFF-FLOP Project -- 16.4 Operator-Robot Cooperation through Teleoperation and Haptic Feedback -- 16.4.1 Telemanipulation FCSD-UoS RobinHand H -- 16.4.2 Telemanipulation FCSD-PIAP RobinHand F -- 16.4.3 Telemanipulation FCSD-KCL RobinHand F -- 16.5 Integrating the Haptic Device RobinHand L with STIFF-FLOP Console -- 16.6 Conclusion -- Acknowledgments -- References -- Part V: Benchmarking Platform for STIFF-FLOP Validation -- 17: Benchmarking for Surgery Simulators -- 17.1 Introduction -- 17.2 Testing and Training Station Description -- 17.2.1 The New Scaled Surgery Benchmarking Platforms.
17.2.2 Sensorized Operation Site.
Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery presents the results of a research project, funded by European Commission, STIFF-FLOP: STIFFness controllable Flexible and Learn-able manipulator for surgical Operations.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.