ORPP logo
Image from Google Jackets

Large Area and Flexible Electronics.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (588 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527680009
Subject(s): Genre/Form: Additional physical formats: Print version:: Large Area and Flexible ElectronicsDDC classification:
  • 621.381531
LOC classification:
  • TK7871 -- .L374 2015eb
Online resources:
Contents:
Intro -- Large Area and Flexible Electronics -- Contents -- List of Contributors -- Overview -- Book Structure and Aim -- Acknowledgments -- References -- Part I: Materials -- Chapter 1 Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors -- 1.1 Introduction -- 1.2 Organic Semiconductor Structural Design -- 1.3 Thin-Film Transistor Applications -- 1.4 p-Channel Semiconductors -- 1.4.1 Polymers -- 1.4.2 Small Molecules -- 1.5 n-Channel Semiconductors -- 1.5.1 Polymers -- 1.5.2 Small Molecules -- 1.6 Ambipolar Semiconductors -- 1.6.1 Polymers -- 1.6.2 Small Molecules -- 1.7 Conclusions -- References -- Chapter 2 Metal-Oxide Thin-Film Transistors for Flexible Electronics -- 2.1 Introduction -- 2.2 Metal-Oxide TFTs -- 2.2.1 Advantages and Applications -- 2.2.2 Vacuum Deposition -- 2.2.3 Solution Processing -- 2.3 Solution-Processed MO Thin Films -- 2.3.1 Nanoparticle-Based Process -- 2.3.2 Sol-Gel-Based Process -- 2.3.3 Hybrid Type -- 2.4 Low-Temperature-Processed MO TFTs for Flexible Electronics -- 2.4.1 Low-Temperature-Processed MO TFTs -- 2.4.1.1 Annealing Environment -- 2.4.1.2 Ink Formulation -- 2.4.1.3 Alternate Annealing Process -- 2.4.2 Photochemical Activation of Oxide Semiconductors -- 2.5 Summary -- References -- Chapter 3 Carbon Nanotube Thin-Film Transistors -- 3.1 Introduction -- 3.2 Individual SWCNTs and SWCNT Thin Films -- 3.3 Chemical Vapor Deposition Growth of SWCNT TFTs -- 3.4 Solution-Based Methods for SWCNT TFTs -- 3.5 Inkjet Printing of Flexible SWCNT TFTs -- 3.6 Fabrication Schemes for High-Performance Inkjet-Printed SWCNT TFTs -- 3.7 Inkjet Printing of SWCNT CMOS Inverters -- 3.8 Inkjet Printing of Aligned SWCNT Films -- 3.9 Conclusion -- References -- Chapter 4 Organic Single-Crystalline Semiconductors for Flexible Electronics Applications -- 4.1 Introduction.
4.2 Electronic and Structural Properties of Single Crystals -- 4.2.1 Intrinsic Transport Properties -- 4.2.2 Crystal Dimensionality -- 4.3 Crystallization Techniques -- 4.3.1 Growth from Vapor Phase -- 4.3.2 Growth from Solution -- 4.4 Single-Crystal Flexible Electronic Devices -- 4.4.1 Fundamental Mechanics for Flexible Electronics -- 4.4.2 Mechanical Versatility of Organic Single Crystals -- 4.4.3 Importance of Mechanical Properties Knowledge -- 4.4.4 The Elastic Constants of Rubrene Single Crystals -- 4.5 Strategies for Flexible Organic Single-Crystal Device Fabrication -- 4.5.1 Discrete Ultrathin Single-Crystal Transistor -- 4.5.2 Transistor Arrays Based on Micropatterned Single Crystals -- 4.5.3 Flexible Single-Crystal Nanowire Devices -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Solution-Processable Quantum Dots -- 5.1 Introduction -- 5.2 Optimization of the Colloidal Synthesis of Quantum Dots by Selection of Suitable Solvents, Ligands, and Precursors -- 5.3 Large-Scale Synthesis of Quantum Dots -- 5.4 Surface Chemistry of Quantum Dots -- 5.5 Post-Synthetic Chemical Modification of Nanocrystals -- 5.6 Conclusions and Outlook -- References -- Chapter 6 Inorganic Semiconductor Nanomaterials for Flexible Electronics -- 6.1 Introduction -- 6.2 Characteristics and Synthesis of Inorganic Semiconducting NMs -- 6.2.1 Characteristics of Inorganic NMs -- 6.2.1.1 Mechanical Properties of Inorganic NMs in Bending and Stretching -- 6.2.1.2 Optoelectrical Properties -- 6.2.2 Fabrication of Inorganic NMs for Flexible Electronics -- 6.2.2.1 Selective Etching -- 6.2.2.2 Anisotropic Etching -- 6.2.2.3 Mass Production of Inorganic NMs -- 6.2.2.4 Transfer Process -- 6.3 Applications in Flexible Electronics -- 6.3.1 Flexible Electronics -- 6.3.1.1 Flexible Solar Cell -- 6.3.1.2 Flexible Memory -- 6.3.1.3 Flexible High-Frequency Transistor.
6.3.1.4 Foldable Transistor Using Ultrathin Si NMs -- 6.3.2 Conformal Device -- 6.3.2.1 Conformal Biomonitoring System -- 6.3.3 Stretchable Electronics -- 6.3.3.1 Stretchable Logic Circuit -- 6.3.3.2 Stretchable Light-Emitting Diode -- 6.3.3.3 Photodetector -- 6.3.4 Utilizing Deformation of NMs -- 6.3.4.1 Nanogenerator and Actuator -- 6.3.4.2 RF Device Using Strained NMs -- 6.3.5 Transparent Transistor -- 6.4 Concluding Remarks -- References -- Chapter 7 Dielectric Materials for Large-Area and Flexible Electronics -- 7.1 Introduction -- 7.2 General Polymer Dielectrics -- 7.3 Cross-Linked Polymer Dielectrics -- 7.4 High-k Polymer Dielectrics -- 7.5 Electrolyte Gate Dielectrics -- 7.6 Self-Assembled Molecular Layer Dielectrics -- 7.7 Hybrid Dielectrics -- 7.7.1 Organic-Inorganic Laminated Bilayers/Multilayers -- 7.7.2 Organic Polymeric/Inorganic Nanoparticle and Nanocomposites -- 7.7.3 Hybrid Dielectrics Based on Organosiloxane and Organozirconia -- 7.8 Sol-Gel High-k Inorganic Dielectrics -- 7.9 Summary and Outlook -- References -- Chapter 8 Electrolyte-Gating Organic Thin Film Transistors -- 8.1 Introduction -- 8.2 Electrolyte-Gated OTFT Operation Mechanisms -- 8.3 Electrolyte Materials -- 8.4 OTFTs Gated with Electrolyte Dielectrics -- 8.5 Circuits Based on Electrolyte-Gated OTFTs -- 8.6 Conclusions -- References -- Chapter 9 Vapor Barrier Films for Flexible Electronics -- 9.1 Introduction -- 9.2 Thin-Film Permeation Barrier Layers -- 9.3 Permeation through Inorganic Thin Films -- 9.4 Time-Resolved Measurements on Barrier Layers -- 9.5 Mechanical Limitations of Inorganic Films -- 9.6 Mechanics of Films on Flexible Substrates -- 9.7 Summary -- References -- Chapter 10 Latest Advances in Substrates for Flexible Electronics -- 10.1 Introduction -- 10.2 Factors Influencing Film Choice -- 10.2.1 Application Area.
10.2.2 Physical Form/Manufacturing Process -- 10.3 Film Property Set -- 10.3.1 Polymer Type -- 10.3.2 Optical Clarity -- 10.3.3 Birefringence -- 10.3.4 The Effect of Thermal Stress on Dimensional Reproducibility -- 10.3.5 Cyclic Oligomers -- 10.3.6 Solvent and Moisture Resistance -- 10.3.7 The Effect of Mechanical Stress on Dimensional Reproducibility -- 10.3.8 Surface Quality -- 10.3.8.1 Inherent Surface Smoothness -- 10.3.8.2 Surface Cleanliness -- 10.4 Summary of Key Properties of Base Substrates -- 10.5 Planarizing Coatings -- 10.6 Examples of Film in Use -- 10.7 Concluding Remarks -- Acknowledgments -- References -- Part II: Devices and Applications -- Chapter 11 Inkjet Printing Process for Large Area Electronics -- 11.1 Introduction -- 11.2 Dynamics of Jet Formation -- 11.3 Ink Rheology: Non-Newtonian Liquids -- 11.4 Dynamics of Drop Impact and Spreading -- 11.5 Applications of Inkjet Printing for Large-Area Electronics -- 11.5.1 Light-Emitting Diodes -- 11.5.2 Thin-Film Transistors -- 11.5.3 Solar Cells -- 11.6 Summary -- References -- Chapter 12 Inkjet-Printed Electronic Circuits Based on Organic Semiconductors -- 12.1 Printed Organic Electronics -- 12.1.1 Printed Electronic Devices -- 12.1.2 Inkjet Printing Technology -- 12.2 CMOS Technology -- 12.2.1 CMOS Inverters -- 12.2.2 Ring Oscillators -- 12.3 High-Speed Organic CMOS Circuits -- 12.3.1 High-Mobility Printable Semiconductors -- 12.3.2 Downscaling of Channel Length -- 12.3.3 Reducing Contact Resistance -- 12.3.4 Reducing Parasitic Overlap Capacitance -- 12.4 Conclusions -- References -- Chapter 13 Large-Area, Printed Organic Circuits for Ambient Electronics -- 13.1 Introduction -- 13.2 Manufacturing Process and Electrical Characteristics -- 13.2.1 Materials and Methods -- 13.2.2 Organic Transistors Manufactured Using Printing Technologies.
13.2.2.1 Manufacturing Process for DNTT Transistors -- 13.2.2.2 Electrical Performance of DNTT Transistors -- 13.2.2.3 Manufacturing Process for All-Printed Transistors -- 13.2.2.4 Electrical Performance of All-Printed Transistors -- 13.2.3 Mechanical Characteristics -- 13.2.4 Inverter Circuits and Ring Oscillator Using Printed Transistors -- 13.2.5 Printed Organic Floating-Gate Transistors -- 13.2.5.1 Manufacturing Process -- 13.2.5.2 Electrical Performance -- 13.3 Demonstration -- 13.3.1 Organic Active-Matrix LED Pixel Circuits -- 13.3.2 Large-Area Flexible Pressure Sensor Sheet -- 13.3.3 Intelligent Sensor Catheter for Medical Diagnosis -- 13.4 Future Prospects -- Acknowledgments -- References -- Chapter 14 Polymer and Organic Nonvolatile Memory Devices -- 14.1 Introduction -- 14.2 Resistive Switching Memories -- 14.2.1 Fundamentals of Resistive Switching Principles -- 14.2.2 Mechanisms of Resistive Switching -- 14.2.2.1 Filamentary Conduction -- 14.2.2.2 Space Charge and Traps -- 14.2.2.3 Charge Transfer -- 14.2.2.4 Ionic Conduction -- 14.2.3 The Role of π-Conjugated Material in Switching Process -- 14.2.4 Recent Flexible RRAM Based on Organic-Inorganic Bistable Materials -- 14.3 Charge Storage in Transistor Gate Dielectric -- 14.3.1 Operation of Charge-Storage OFET Memory Devices -- 14.3.2 Charge Storage in Polymer Electrets -- 14.3.3 Nanoparticle-Embedded Gate Dielectrics -- 14.4 Polymer Ferroelectric Devices -- 14.4.1 Materials -- 14.4.2 Principles of Memory Operation -- 14.4.2.1 Capacitor -- 14.4.2.2 Field-Effect Transistor -- 14.5 Conclusions -- References -- Chapter 15 Flexible Displays -- 15.1 Introduction -- 15.2 Flexible Substrates -- 15.2.1 Thermal Stability -- 15.2.2 Optical Transparency -- 15.2.3 Permeation of Oxygen and Moisture -- 15.2.4 Chemical Resistance -- 15.2.5 Surface Roughness -- 15.3 Display Mode.
15.4 Thin-Film Transistor.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Large Area and Flexible Electronics -- Contents -- List of Contributors -- Overview -- Book Structure and Aim -- Acknowledgments -- References -- Part I: Materials -- Chapter 1 Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors -- 1.1 Introduction -- 1.2 Organic Semiconductor Structural Design -- 1.3 Thin-Film Transistor Applications -- 1.4 p-Channel Semiconductors -- 1.4.1 Polymers -- 1.4.2 Small Molecules -- 1.5 n-Channel Semiconductors -- 1.5.1 Polymers -- 1.5.2 Small Molecules -- 1.6 Ambipolar Semiconductors -- 1.6.1 Polymers -- 1.6.2 Small Molecules -- 1.7 Conclusions -- References -- Chapter 2 Metal-Oxide Thin-Film Transistors for Flexible Electronics -- 2.1 Introduction -- 2.2 Metal-Oxide TFTs -- 2.2.1 Advantages and Applications -- 2.2.2 Vacuum Deposition -- 2.2.3 Solution Processing -- 2.3 Solution-Processed MO Thin Films -- 2.3.1 Nanoparticle-Based Process -- 2.3.2 Sol-Gel-Based Process -- 2.3.3 Hybrid Type -- 2.4 Low-Temperature-Processed MO TFTs for Flexible Electronics -- 2.4.1 Low-Temperature-Processed MO TFTs -- 2.4.1.1 Annealing Environment -- 2.4.1.2 Ink Formulation -- 2.4.1.3 Alternate Annealing Process -- 2.4.2 Photochemical Activation of Oxide Semiconductors -- 2.5 Summary -- References -- Chapter 3 Carbon Nanotube Thin-Film Transistors -- 3.1 Introduction -- 3.2 Individual SWCNTs and SWCNT Thin Films -- 3.3 Chemical Vapor Deposition Growth of SWCNT TFTs -- 3.4 Solution-Based Methods for SWCNT TFTs -- 3.5 Inkjet Printing of Flexible SWCNT TFTs -- 3.6 Fabrication Schemes for High-Performance Inkjet-Printed SWCNT TFTs -- 3.7 Inkjet Printing of SWCNT CMOS Inverters -- 3.8 Inkjet Printing of Aligned SWCNT Films -- 3.9 Conclusion -- References -- Chapter 4 Organic Single-Crystalline Semiconductors for Flexible Electronics Applications -- 4.1 Introduction.

4.2 Electronic and Structural Properties of Single Crystals -- 4.2.1 Intrinsic Transport Properties -- 4.2.2 Crystal Dimensionality -- 4.3 Crystallization Techniques -- 4.3.1 Growth from Vapor Phase -- 4.3.2 Growth from Solution -- 4.4 Single-Crystal Flexible Electronic Devices -- 4.4.1 Fundamental Mechanics for Flexible Electronics -- 4.4.2 Mechanical Versatility of Organic Single Crystals -- 4.4.3 Importance of Mechanical Properties Knowledge -- 4.4.4 The Elastic Constants of Rubrene Single Crystals -- 4.5 Strategies for Flexible Organic Single-Crystal Device Fabrication -- 4.5.1 Discrete Ultrathin Single-Crystal Transistor -- 4.5.2 Transistor Arrays Based on Micropatterned Single Crystals -- 4.5.3 Flexible Single-Crystal Nanowire Devices -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Solution-Processable Quantum Dots -- 5.1 Introduction -- 5.2 Optimization of the Colloidal Synthesis of Quantum Dots by Selection of Suitable Solvents, Ligands, and Precursors -- 5.3 Large-Scale Synthesis of Quantum Dots -- 5.4 Surface Chemistry of Quantum Dots -- 5.5 Post-Synthetic Chemical Modification of Nanocrystals -- 5.6 Conclusions and Outlook -- References -- Chapter 6 Inorganic Semiconductor Nanomaterials for Flexible Electronics -- 6.1 Introduction -- 6.2 Characteristics and Synthesis of Inorganic Semiconducting NMs -- 6.2.1 Characteristics of Inorganic NMs -- 6.2.1.1 Mechanical Properties of Inorganic NMs in Bending and Stretching -- 6.2.1.2 Optoelectrical Properties -- 6.2.2 Fabrication of Inorganic NMs for Flexible Electronics -- 6.2.2.1 Selective Etching -- 6.2.2.2 Anisotropic Etching -- 6.2.2.3 Mass Production of Inorganic NMs -- 6.2.2.4 Transfer Process -- 6.3 Applications in Flexible Electronics -- 6.3.1 Flexible Electronics -- 6.3.1.1 Flexible Solar Cell -- 6.3.1.2 Flexible Memory -- 6.3.1.3 Flexible High-Frequency Transistor.

6.3.1.4 Foldable Transistor Using Ultrathin Si NMs -- 6.3.2 Conformal Device -- 6.3.2.1 Conformal Biomonitoring System -- 6.3.3 Stretchable Electronics -- 6.3.3.1 Stretchable Logic Circuit -- 6.3.3.2 Stretchable Light-Emitting Diode -- 6.3.3.3 Photodetector -- 6.3.4 Utilizing Deformation of NMs -- 6.3.4.1 Nanogenerator and Actuator -- 6.3.4.2 RF Device Using Strained NMs -- 6.3.5 Transparent Transistor -- 6.4 Concluding Remarks -- References -- Chapter 7 Dielectric Materials for Large-Area and Flexible Electronics -- 7.1 Introduction -- 7.2 General Polymer Dielectrics -- 7.3 Cross-Linked Polymer Dielectrics -- 7.4 High-k Polymer Dielectrics -- 7.5 Electrolyte Gate Dielectrics -- 7.6 Self-Assembled Molecular Layer Dielectrics -- 7.7 Hybrid Dielectrics -- 7.7.1 Organic-Inorganic Laminated Bilayers/Multilayers -- 7.7.2 Organic Polymeric/Inorganic Nanoparticle and Nanocomposites -- 7.7.3 Hybrid Dielectrics Based on Organosiloxane and Organozirconia -- 7.8 Sol-Gel High-k Inorganic Dielectrics -- 7.9 Summary and Outlook -- References -- Chapter 8 Electrolyte-Gating Organic Thin Film Transistors -- 8.1 Introduction -- 8.2 Electrolyte-Gated OTFT Operation Mechanisms -- 8.3 Electrolyte Materials -- 8.4 OTFTs Gated with Electrolyte Dielectrics -- 8.5 Circuits Based on Electrolyte-Gated OTFTs -- 8.6 Conclusions -- References -- Chapter 9 Vapor Barrier Films for Flexible Electronics -- 9.1 Introduction -- 9.2 Thin-Film Permeation Barrier Layers -- 9.3 Permeation through Inorganic Thin Films -- 9.4 Time-Resolved Measurements on Barrier Layers -- 9.5 Mechanical Limitations of Inorganic Films -- 9.6 Mechanics of Films on Flexible Substrates -- 9.7 Summary -- References -- Chapter 10 Latest Advances in Substrates for Flexible Electronics -- 10.1 Introduction -- 10.2 Factors Influencing Film Choice -- 10.2.1 Application Area.

10.2.2 Physical Form/Manufacturing Process -- 10.3 Film Property Set -- 10.3.1 Polymer Type -- 10.3.2 Optical Clarity -- 10.3.3 Birefringence -- 10.3.4 The Effect of Thermal Stress on Dimensional Reproducibility -- 10.3.5 Cyclic Oligomers -- 10.3.6 Solvent and Moisture Resistance -- 10.3.7 The Effect of Mechanical Stress on Dimensional Reproducibility -- 10.3.8 Surface Quality -- 10.3.8.1 Inherent Surface Smoothness -- 10.3.8.2 Surface Cleanliness -- 10.4 Summary of Key Properties of Base Substrates -- 10.5 Planarizing Coatings -- 10.6 Examples of Film in Use -- 10.7 Concluding Remarks -- Acknowledgments -- References -- Part II: Devices and Applications -- Chapter 11 Inkjet Printing Process for Large Area Electronics -- 11.1 Introduction -- 11.2 Dynamics of Jet Formation -- 11.3 Ink Rheology: Non-Newtonian Liquids -- 11.4 Dynamics of Drop Impact and Spreading -- 11.5 Applications of Inkjet Printing for Large-Area Electronics -- 11.5.1 Light-Emitting Diodes -- 11.5.2 Thin-Film Transistors -- 11.5.3 Solar Cells -- 11.6 Summary -- References -- Chapter 12 Inkjet-Printed Electronic Circuits Based on Organic Semiconductors -- 12.1 Printed Organic Electronics -- 12.1.1 Printed Electronic Devices -- 12.1.2 Inkjet Printing Technology -- 12.2 CMOS Technology -- 12.2.1 CMOS Inverters -- 12.2.2 Ring Oscillators -- 12.3 High-Speed Organic CMOS Circuits -- 12.3.1 High-Mobility Printable Semiconductors -- 12.3.2 Downscaling of Channel Length -- 12.3.3 Reducing Contact Resistance -- 12.3.4 Reducing Parasitic Overlap Capacitance -- 12.4 Conclusions -- References -- Chapter 13 Large-Area, Printed Organic Circuits for Ambient Electronics -- 13.1 Introduction -- 13.2 Manufacturing Process and Electrical Characteristics -- 13.2.1 Materials and Methods -- 13.2.2 Organic Transistors Manufactured Using Printing Technologies.

13.2.2.1 Manufacturing Process for DNTT Transistors -- 13.2.2.2 Electrical Performance of DNTT Transistors -- 13.2.2.3 Manufacturing Process for All-Printed Transistors -- 13.2.2.4 Electrical Performance of All-Printed Transistors -- 13.2.3 Mechanical Characteristics -- 13.2.4 Inverter Circuits and Ring Oscillator Using Printed Transistors -- 13.2.5 Printed Organic Floating-Gate Transistors -- 13.2.5.1 Manufacturing Process -- 13.2.5.2 Electrical Performance -- 13.3 Demonstration -- 13.3.1 Organic Active-Matrix LED Pixel Circuits -- 13.3.2 Large-Area Flexible Pressure Sensor Sheet -- 13.3.3 Intelligent Sensor Catheter for Medical Diagnosis -- 13.4 Future Prospects -- Acknowledgments -- References -- Chapter 14 Polymer and Organic Nonvolatile Memory Devices -- 14.1 Introduction -- 14.2 Resistive Switching Memories -- 14.2.1 Fundamentals of Resistive Switching Principles -- 14.2.2 Mechanisms of Resistive Switching -- 14.2.2.1 Filamentary Conduction -- 14.2.2.2 Space Charge and Traps -- 14.2.2.3 Charge Transfer -- 14.2.2.4 Ionic Conduction -- 14.2.3 The Role of π-Conjugated Material in Switching Process -- 14.2.4 Recent Flexible RRAM Based on Organic-Inorganic Bistable Materials -- 14.3 Charge Storage in Transistor Gate Dielectric -- 14.3.1 Operation of Charge-Storage OFET Memory Devices -- 14.3.2 Charge Storage in Polymer Electrets -- 14.3.3 Nanoparticle-Embedded Gate Dielectrics -- 14.4 Polymer Ferroelectric Devices -- 14.4.1 Materials -- 14.4.2 Principles of Memory Operation -- 14.4.2.1 Capacitor -- 14.4.2.2 Field-Effect Transistor -- 14.5 Conclusions -- References -- Chapter 15 Flexible Displays -- 15.1 Introduction -- 15.2 Flexible Substrates -- 15.2.1 Thermal Stability -- 15.2.2 Optical Transparency -- 15.2.3 Permeation of Oxygen and Moisture -- 15.2.4 Chemical Resistance -- 15.2.5 Surface Roughness -- 15.3 Display Mode.

15.4 Thin-Film Transistor.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.