Sustainable Energy Conversion for Electricity and Coproducts : Principles, Technologies, and Equipment.
Material type:
- text
- computer
- online resource
- 9781119064428
- 621.042
- TK1005 -- .R36 2015eb
Intro -- Title Page -- Copyright Page -- Contents -- Preface -- About The Book -- About The Author -- 1 Introduction to Energy Systems -- 1.1 Energy Sources and Distribution of Resources -- 1.1.1 Fossil Fuels -- 1.1.1.1 Natural Gas -- 1.1.1.2 Petroleum -- 1.1.1.3 Coal -- 1.1.1.4 Oil Shale -- 1.1.2 Nuclear -- 1.1.3 Renewables -- 1.1.3.1 Biomass and Municipal Solid Waste -- 1.1.3.2 Hydroelectric -- 1.1.3.3 Solar -- 1.1.3.4 Wind -- 1.1.3.5 Geothermal -- 1.2 Energy and The Environment -- 1.2.1 Criteria and Other Air Pollutants -- 1.2.1.1 Carbon Monoxide and Organic Compounds -- 1.2.1.2 Sulfur Oxides -- 1.2.1.3 Nitrogen Oxides -- 1.2.1.4 Ozone -- 1.2.1.5 Lead -- 1.2.1.6 Particulate Matter -- 1.2.1.7 Mercury -- 1.2.2 Carbon Dioxide Emissions, Capture, and Storage -- 1.2.3 Water Usage -- 1.3 Holistic Approach -- 1.3.1 Supply Chain and Life Cycle Assessment -- 1.4 Conclusions -- References -- 2 Thermodynamics -- 2.1 First Law -- 2.1.1 Application to a Combustor -- 2.1.1.1 Methane Combustor Exhaust Temperature -- 2.1.2 Efficiency Based on First Law -- 2.2 Second Law -- 2.2.1 Quality Destruction and Entropy Generation -- 2.2.2 Second Law Analysis -- 2.2.3 First and Second Law Efficiencies -- 2.3 Combustion and Gibbs Free Energy Minimization -- 2.4 Nonideal Behavior -- 2.4.1 Gas Phase -- 2.4.2 Vapor-Liquid Phases -- References -- 3 Fluid Flow Equipment -- 3.1 Fundamentals of Fluid Flow -- 3.1.1 Flow Regimes -- 3.1.2 Extended Bernoulli Equation -- 3.2 Single-Phase Incompressible Flow -- 3.2.1 Pressure Drop in Pipes -- 3.2.2 Pressure Drop in Fittings -- 3.3 Single-Phase Compressible Flow -- 3.3.1 Pressure Drop in Pipes and Fittings -- 3.3.2 Choked Flow -- 3.4 Two-Phase Fluid Flow -- 3.4.1 Gas-Liquid Flow Regimes -- 3.4.2 Pressure Drop in Pipes and Fittings -- 3.4.3 Droplet Separation -- 3.5 Solid fluid Systems -- 3.5.1 Flow Regimes -- 3.5.2 Pressure Drop.
3.5.3 Pneumatic Conveying -- 3.6 Fluid Velocity in Pipes -- 3.7 Turbomachinery -- 3.7.1 Pumps -- 3.7.1.1 Centrifugal Pumps -- 3.7.1.2 Axial Pumps -- 3.7.1.3 Rotary Pumps -- 3.7.1.4 Reciprocating Pumps -- 3.7.1.5 Specific Speed -- 3.7.1.6 Net Positive Suction Head -- 3.7.1.7 Pumping Power -- 3.7.1.8 System Requirements and Pump Characteristics -- 3.7.2 Compressors -- 3.7.2.1 Centrifugal Compressors -- 3.7.2.2 Axial Compressors -- 3.7.2.3 Reciprocating Compressors -- 3.7.2.4 Rotary Screw Compressors -- 3.7.2.5 System Requirements and Compressor Characteristics -- 3.7.2.6 Compression Power and Intercooling -- 3.7.3 Fans and Blowers -- 3.7.4 Expansion Turbines -- 3.7.4.1 Expansion Power and Reheat -- References -- 4 Heat Transfer Equipment -- 4.1 Fundamentals of Heat Transfer -- 4.1.1 Conduction -- 4.1.2 Convection -- 4.1.2.1 Heat Transfer by Free Convection from Vertical and Horizontal Flat Surfaces -- 4.1.2.2 Heat Transfer by Free Convection from Horizontal Pipes -- 4.1.2.3 Heat Transfer by Forced Convection through a Tube -- 4.1.2.4 Heat Transfer by Forced Convection over a Bank of Tubes -- 4.1.2.5 Heat Transfer by Condensation outside a Tube -- 4.1.2.6 Heat Transfer by Boiling outside a Tube -- 4.1.2.7 Heat Transfer by Boiling inside a Tube -- 4.1.2.8 Heat Transfer from Tubes with Fins -- 4.1.2.9 Overall Heat Transfer Coefficient for Heat Transfer between Fluids Separated by Tube Wall -- 4.1.2.10 Cocurrent, Countercurrent, and Cross Flow -- 4.1.2.11 Log Mean Temperature Difference -- 4.1.3 Radiation -- 4.1.3.1 Gas Radiation -- 4.1.3.2 Heat Loss from Insulated Pipe by Conduction, Convection, and Radiation -- 4.2 Heat Exchange Equipment -- 4.2.1 Shell and Tube Heat Exchangers -- 4.2.1.1 Removable Bundles -- 4.2.1.2 Nonremovable Bundles (Fixed Tubesheet) -- 4.2.1.3 Shell Types -- 4.2.1.4 Tube side -- 4.2.1.5 Tube Pitch and Pattern -- 4.2.1.6 Materials.
4.2.1.7 Fluid Allocation -- 4.2.1.8 Double Pipe Heat Exchangers -- 4.2.1.9 Surface Condenser -- 4.2.1.10 Reboilers -- 4.2.2 Plate Heat Exchangers -- 4.2.3 Air-Cooled Exchangers -- 4.2.4 Heat Recovery Steam Generators (HRSGs) -- 4.2.5 Boilers and Fired Heaters -- 4.2.5.1 Fire Tube Design -- 4.2.5.2 Water Tube Design -- References -- 5 Mass Transfer and Chemical Reaction Equipment -- 5.1 Fundamentals of Mass Transfer -- 5.1.1 Molecular Diffusion -- 5.1.2 Convective Transport -- 5.1.3 Adsorption -- 5.2 Gas-Liquid Systems -- 5.2.1 Types of Mass Transfer Operations -- 5.2.1.1 Absorption -- 5.2.1.2 Stripping -- 5.2.1.3 Distillation -- 5.2.1.4 Energy Saving Measures -- 5.2.1.5 Stage Efficiency -- 5.2.1.6 Azeotropes -- 5.2.1.7 Extraction -- 5.2.1.8 Extractive Distillation -- 5.2.1.9 Humidification and Cooling Towers -- 5.2.2 Types of Columns -- 5.2.2.1 Tray Columns -- 5.2.2.2 Packed Columns -- 5.2.2.3 Spray Columns -- 5.2.3 Column Sizing -- 5.2.3.1 Key Components -- 5.2.3.2 Column Specifications -- 5.2.3.3 Reflux Ratio and Number of Stages -- 5.2.3.4 Feed Tray Location -- 5.2.3.5 Equilibrium Stage Approach -- 5.2.3.6 Rate-based Approach -- 5.2.3.7 Overall Column Height -- 5.2.4 Column Diameter and Pressure Drop -- 5.2.4.1 Tray Columns -- 5.2.4.2 Packed Columns -- 5.3 Fluid-Solid Systems -- 5.3.1 Adsorbers -- 5.3.1.1 Transport Model -- 5.3.1.2 Equilibrium Model -- 5.3.2 Catalytic Reactors -- 5.3.2.1 Packed Bed Reactors -- 5.3.2.2 Fluidized Bed Reactors -- 5.3.2.3 Slurry Bed Reactors -- 5.3.2.4 Advanced Reactors -- 5.3.2.5 Reactor Models -- References -- 6 Prime Movers -- 6.1 Gas Turbines -- 6.1.1 Principles of Operation -- 6.1.2 Combustor and Air Emissions -- 6.1.3 Start-Up and Load Control -- 6.1.4 Performance Characteristics -- 6.1.5 Fuel Types -- 6.1.6 Technology Developments -- 6.1.6.1 Firing Temperature -- 6.1.6.2 Compression Ratio and Intercooling.
6.1.6.3 Inlet Air Fogging -- 6.1.6.4 Pressure Gain Combustor -- 6.1.6.5 Trapped Vortex Combustor -- 6.1.6.6 Catalytic Combustor -- 6.2 Steam Turbines -- 6.2.1 Principles of Operation -- 6.2.1.1 Impulse versus Reaction Blades -- 6.2.2 Load Control -- 6.2.3 Performance Characteristics -- 6.2.4 Technology Developments -- 6.3 Reciprocating Internal Combustion Engines -- 6.3.1 Principles of Operation -- 6.3.1.1 Two Stroke Cycle Engines -- 6.3.1.2 Four Stroke Cycle Engine -- 6.3.1.3 Supercharging and Turbocharging -- 6.3.2 Air Emissions -- 6.3.3 Start-up -- 6.3.4 Performance Characteristics -- 6.3.5 Fuel Types -- 6.3.5.1 Cetane Number -- 6.3.5.2 Octane Number -- 6.4 Hydraulic Turbines -- 6.4.1 Process Industry Applications -- 6.4.2 Hydroelectric Power Plant Applications -- References -- 7 Systems Analysis -- 7.1 Design Basis -- 7.1.1 Fuel or Feedstock Specifications -- 7.1.2 Mode of Heat Rejection -- 7.1.3 Ambient Conditions -- 7.1.4 Other Site-Specific Considerations -- 7.1.5 Environmental Emissions Criteria -- 7.1.6 Capacity Factor -- 7.1.7 Off-Design Requirements -- 7.2 System Configuration -- 7.3 Exergy and Pinch Analyses -- 7.3.1 Exergy Analysis -- 7.3.2 Pinch Analysis -- 7.4 Process Flow Diagrams -- 7.5 Dynamic Simulation and Process Control -- 7.5.1 Dynamic Simulation -- 7.5.2 Automatic Process Control -- 7.6 Cost Estimation and Economics -- 7.6.1 Total Plant Cost -- 7.6.1.1 Direct Field Material Costs -- 7.6.1.2 Direct Field Labor Costs -- 7.6.1.3 Subcontractor Costs -- 7.6.1.4 Indirect Field Costs -- 7.6.1.5 Home Office Costs -- 7.6.1.6 Other Miscellaneous Costs -- 7.6.1.7 Capacity-Factored Estimate -- 7.6.1.8 Parametric Cost Estimation -- 7.6.1.9 Equipment-Factored Estimates -- 7.6.1.10 Detailed-Cost Estimation -- 7.6.2 Economic Analysis -- 7.6.2.1 Organization and Start-Up Costs -- 7.6.2.2 Working Capital.
7.6.2.3 Operating and Maintenance Costs -- 7.6.2.4 Cost of Product -- 7.6.2.5 Simple Payback Period Calculation -- 7.7 Life Cycle Assessment -- Reference -- 8 Rankine Cycle Systems -- 8.1 Basic Rankine Cycle -- 8.2 Addition of Superheating -- 8.3 Addition of Reheat -- 8.4 Addition of Economizer and Regenerative Feedwater Heating -- 8.5 Supercritical Rankine Cycle -- 8.6 The Steam Cycle -- 8.7 Coal-Fired Power Generation -- 8.7.1 Coal-Fired Boilers -- 8.7.2 Emissions and Control -- 8.7.2.1 Particulate Matter -- 8.7.2.2 SOx -- 8.7.2.3 NOx -- 8.7.2.4 CO and Organic Compounds -- 8.7.2.5 Trace Metals -- 8.7.2.6 Halogens -- 8.7.2.7 Greenhouse Gases -- 8.7.3 Description of a Large Supercritical Steam Rankine Cycle -- 8.7.3.1 Boiler -- 8.7.3.2 Steam Turbine -- 8.8 Plant-Derived Biomass-Fired Power Generation -- 8.8.1 Feedstock Characteristics -- 8.8.2 Biomass-Fired Boilers -- 8.8.3 Cofiring Biomass in Coal-Fired Boilers -- 8.8.4 Emissions -- 8.9 Municipal Solid Waste Fired Power Generation -- 8.9.1 MSW-Fired Boilers -- 8.9.2 Emissions Control -- 8.9.2.1 Dry Scrubbing Process -- 8.9.2.2 Wet Scrubbing Process -- 8.9.2.3 Refuse-Derived Fuel -- 8.10 Low-Temperature Cycles -- 8.10.1 Organic Rankine Cycle (ORC) -- 8.10.1.1 Selection of the Working Fluid -- References -- 9 Brayton-Rankine Combined Cycle Systems -- 9.1 Combined Cycle -- 9.1.1 Gas Turbine Cycles for Combined Cycles -- 9.1.2 Steam Cycles for Combined Cycles -- 9.2 Natural Gas-Fueled Plants -- 9.2.1 Description of a Large Combined Cycle -- 9.2.2 NOx Control -- 9.2.3 CO and Volatile Organic Compounds Control -- 9.2.4 CO2 Emissions Control -- 9.2.4.1 Precombustion Control -- 9.2.4.2 Postcombustion Control -- 9.2.5 Characteristics of Combined Cycles -- 9.3 Coal and Biomass Fueled Plants -- 9.3.1 Gasification -- 9.3.2 Gasifier Feedstocks -- 9.3.3 Key Technologies in IGCC Systems.
9.3.3.1 Air Separation Technology.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.