Photonics, Volume 1 : Fundamentals of Photonics and Physics.
Material type:
- text
- computer
- online resource
- 9781119009696
- 621.365
- TA1520 -- .F86 2015eb
Intro -- Photonics -- Contents -- List of Contributors -- Preface -- 1 A Photon in Perspective -- 1.1 Introduction -- 1.2 Foundations -- 1.2.1 Modes of Optical Propagation -- 1.2.2 Quantum Foundations -- 1.2.3 Developing Quantum Optics -- 1.2.4 Boson Statistics -- 1.3 Medium Issues -- 1.3.1 Speed of Propagation -- 1.3.2 Momentum -- 1.3.3 Directedness of Propagation -- 1.4 Photon Localization and Wavefunction -- 1.4.1 Localization -- 1.4.2 Wavefunction -- 1.5 The Quantum Vacuum and Virtual Photons -- 1.5.1 Vacuum Fluctuations -- 1.5.2 Virtual Photons in Action -- 1.5.3 Virtual Photon Propagation -- 1.5.4 Casimir Forces -- 1.6 Structured Light -- 1.6.1 Complex Modes and Vector Beams -- 1.6.2 Chirality and Angular Momentum -- 1.6.3 Multipole Emission -- 1.6.4 Information in a Photon -- 1.7 Photon Number Fluctuations and Phase -- 1.7.1 Coherence and Fluctuations -- 1.7.2 Phase -- 1.8 The Reality of Photonics -- Acknowledgments -- References -- 2 Coherence and Statistical Optics -- 2.1 Introduction -- 2.2 Classical Theory of Optical Coherence in the Space-Time Domain -- 2.2.1 Degree of Coherence in the Space-Time Domain -- 2.2.2 Complete Spatial Coherence in the Time Domain -- 2.3 Classical Theory of Optical Coherence in the Space-Frequency Domain -- 2.3.1 Degree of Coherence in the Space-Frequency Domain -- 2.3.2 Complete Spatial Coherence in the Frequency Domain -- 2.4 Cross-Spectrally Pure Optical Fields -- 2.4.1 Application of Coherence Theory in Structure Determination of Random Media -- 2.5 Polarization Properties of Stochastic Beams -- 2.5.1 Matrix Formulation of the Theory of Polarization -- 2.5.2 Unpolarized, Polarized, and Partially Polarized Light Beam -- 2.5.3 Statistical Similarity and Complete Polarization -- 2.5.4 Polarization Properties of Light in the Frequency Domain.
2.5.5 Remarks on Polarization Properties of Light in Time and Frequency Domains -- 2.6 Remarks on Partially Coherent and Partially Polarized Beams -- 2.7 Basics of Quantum Theory of Optical Coherence -- 2.8 Concluding Remarks -- Acknowledgments -- References -- 3 Light Beams with Spatially Variable Polarization -- 3.1 Introduction -- 3.2 POINCARÉ Modes of Beams -- 3.2.1 States of Polarization -- 3.2.2 Spatial Modes -- 3.2.3 Poincaré Modes -- 3.3 Experimental Approaches -- 3.4 Polarization Singularities -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Quantum Optics -- 4.1 Introduction -- 4.2 Fundamentals -- 4.2.1 Quantum Mechanics of the Harmonic Oscillator -- 4.2.2 The Electromagnetic Field -- 4.2.3 Phase-Space Representations of the Quantum State -- 4.2.4 Two-State System or Qubit -- 4.2.5 Electric Dipole Interaction -- 4.3 Open Systems: Inputs and Outputs -- 4.3.1 Heisenberg Picture -- 4.3.2 Schrödinger Picture -- 4.3.3 Quantum Regression -- 4.3.4 Quantum Jumps -- 4.4 Photon Counting -- 4.4.1 Basics -- 4.4.2 Classical and Nonclassical Fields -- 4.4.3 Homodyne/Heterodyne Detection -- 4.4.4 Quantum Trajectory Theory -- 4.5 Cavity and Circuit QED -- 4.5.1 Jaynes-Cummings Model -- 4.5.2 Jaynes-Cummings Model with Decay -- 4.5.3 Strong Coupling -- References -- 5 Squeezed light -- 5.1 What is squeezed light? -- 5.1.1 Single-Mode Squeezed Light -- 5.1.2 Two-Mode Squeezed Light -- 5.2 Salient features of squeezed states -- 5.2.1 The Squeezing Operator -- 5.2.2 Photon Number Statistics -- 5.2.3 Interconversion Between Single- and Two-Mode Squeezing -- 5.2.4 Squeezed Vacuum and Squeezed Light -- 5.2.5 Effect of Losses -- 5.3 Detection -- 5.3.1 Balanced Homodyne Detection -- 5.3.2 Time-Domain Approach -- 5.3.3 Frequency-Domain Approach -- 5.4 Preparation -- 5.4.1 Via Parametric Down-Conversion -- 5.4.2 In Atomic Ensembles -- 5.4.3 In Fibers.
5.5 Applications in quantum information -- 5.5.1 Quantum-Optical State Engineering -- 5.5.2 Continuous-Variable Quantum Teleportation -- 5.6 Applications in quantum metrology -- 5.7 Conclusion and outlook -- References -- 6 Electromagnetic Theory of Materials -- 6.1 Preamble -- 6.2 Macroscopic Viewpoint -- 6.2.1 Maxwell Postulates -- 6.2.2 Constitutive Relations -- 6.2.3 Time/Frequency Domain -- 6.3 Constitutive Dyadics -- 6.3.1 Constraints -- 6.3.2 Specializations -- 6.4 Linear Materials -- 6.4.1 Isotropic Materials -- 6.4.2 Anisotropic Materials -- 6.4.3 Bianisotropic Materials -- 6.4.4 Nonhomogeneous Materials -- 6.5 Nonlinear Materials -- 6.5.1 Nonlinearity of Quantum Electrodynamics Vacuum -- 6.6 Closing Remarks -- References -- 7 Surface and Cavity Nanophotonics -- 7.1 Introduction -- 7.2 Basic Formalism -- 7.2.1 Hamiltonian and Essential States -- 7.2.2 Single Interface-the Simplest Open Cavity -- 7.3 Dipole Emitter Near Edge -- 7.3.1 Normal Modes -- 7.3.2 Single-Emitter De-excitation Rate -- 7.3.3 Dipole Moment Normal to the z-Plane. -- 7.3.4 Dipole Along the y-Axis -- 7.4 Quantum Correlations -- 7.5 Entanglement -- 7.6 Wedge Cavities -- 7.7 Conclusions -- Acknowledgments -- References -- 8 Quantum Electrodynamics -- 8.1 Introduction -- 8.2 Molecular QED: Principle of Minimal Electromagnetic Coupling -- 8.3 Multipolar Hamiltonian -- 8.4 One-Photon Absorption -- 8.5 Emission of Light: Spontaneous and Stimulated Processes -- 8.6 Linear Light-Scattering: The Kramers-Heisenberg Dispersion Formula -- 8.7 Chiroptical Effects -- 8.8 Two-Photon Absorption -- 8.9 Nonlinear Light-Scattering: Sum-Frequency and Harmonic Generation -- 8.10 Resonance Energy Transfer -- 8.11 van der Waals Dispersion Energy -- 8.12 Radiation-Induced Interparticle Forces -- 8.13 Summary and Outlook -- References -- 9 Multiphoton Processes -- 9.1 Introduction.
9.1.1 Historical Perspective -- 9.2 Molecular Two-Photon Absorption: Basic Principles -- 9.2.1 The Nonlinear Optical Polarization -- 9.2.2 The Two-Photon Absorption Cross-Section -- 9.3 Molecular Two-Photon Fluorescence -- 9.3.1 Polarization Dependence of Two-Photon Absorption -- 9.3.2 Two-Photon Excited Fluorescence -- 9.3.3 Two- and Multiphoton Absorption in Free Rotors -- 9.4 Applications and Future Prospects -- 9.5 Conclusions -- Acknowledgments -- References -- 10 Orbital Angular Momentum -- 10.1 Historical Introduction -- 10.2 Creating Beams with OAM -- 10.3 Micro-manipulation through the use of OAM -- 10.4 Beam Transformations -- 10.5 Measuring Beams with OAM -- 10.6 OAM in Classical Imaging -- 10.7 OAM in Nonlinear and Quantum Optics -- 10.8 Conclusions -- References -- 11 Introduction to Helicity and Electromagnetic Duality Transformations in Optics -- 11.1 Introduction -- 11.2 Symmetries and Operators -- 11.3 Electromagnetic Duality -- 11.4 Optical Helicity and Electromagnetic Duality Symmetry -- 11.5 Duality Symmetry in Piecewise Homogeneous and Isotropic Media -- 11.6 Applications of the Framework -- 11.6.1 Spin to Orbit Angular Momentum Transfer -- 11.6.2 Bessel Beams with Well Defined Angular Momentum and Helicity -- 11.6.3 Optical Vortices in Focusing -- 11.6.4 Optical Vortices in Scattering -- 11.6.5 Kerker Conditions -- 11.7 Conclusions -- References -- 12 Slow and Fast Light -- 12.1 Introduction -- 12.2 Mechanisms of Slow Light -- 12.2.1 Material Slow Light -- 12.2.2 Structural Slow Light -- 12.3 Physics with Slow and Fast Light -- 12.3.1 Common Slow-Light Processes -- 12.3.2 Superluminal and Backward Light -- 12.3.3 Kinetics Properties and Photon Drag -- 12.3.4 Enhancement of Nonlinearity -- 12.4 Some Applications of Slow and Fast Light -- 12.4.1 Optical Tunable Delay Lines -- 12.4.2 Optical Memories -- 12.4.3 SLIDAR.
12.4.4 Interferometric Spectrometers -- 12.5 Fundamental Limits on Slow Light -- 12.5.1 Limits for Optical Delay Lines -- 12.5.2 Limits for Interferometric Spectroscopy -- References -- 13 Attosecond Physics: Attosecond Streaking Spectroscopy of Atoms and Solids -- 13.1 Introduction -- 13.1.1 The Advent of Attosecond Physics -- 13.1.2 Ultrashort Laser Pulses Exert Well-Defined Electromagnetic Forces -- 13.1.3 Attosecond Light Pulses Through High Harmonic Generation -- 13.1.4 Time-Resolving Basic Optoelectronic Phenomena on an Attosecond Scale -- 13.2 Time-Resolved Photoemission from Atoms -- 13.2.1 Emission and Characterization of Photoelectron Wave Packets -- 13.2.2 Influence of the IR Streaking Field on the Photoemission Process -- 13.3 Streaked Photoemission from Solids -- 13.3.1 Principle and Setup for Fs to Sub-Fs Time-Resolved Experiments on Surfaces -- 13.3.2 Photoemission Delay Measured for Tungsten Surfaces -- 13.3.3 Theoretical Modeling of Attosecond Photoemission from Tungsten -- 13.3.4 Modeling of Photoemission Delays in Tungsten -- 13.3.5 Attosecond Photoemission from Rhenium Surfaces -- 13.3.6 Attosecond Photoemission from Magnesium Surfaces -- 13.3.7 Toward Time Resolving Collective Electrons Dynamics: Probing Plasmon-Response Effects in Streaked Photoelectron Spectra -- 13.4 Attosecond Streaking from Nanostructures -- 13.4.1 Instantaneous Versus Ponderomotive Streaking -- 13.4.2 Modeling of the Attosecond Streaking from Metal Nanoparticles -- 13.4.3 Attosecond Nanoplasmonic Microscopy -- 13.5 Conclusions -- Acknowledgments -- References -- Index -- Supplemental Images -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.