ORPP logo
Image from Google Jackets

Statistical Optics.

By: Material type: TextTextSeries: Wiley Series in Pure and Applied Optics SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 2nd edDescription: 1 online resource (541 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119009467
Subject(s): Genre/Form: Additional physical formats: Print version:: Statistical OpticsDDC classification:
  • 535.01/5195
LOC classification:
  • QC355.2 -- .G663 2015eb
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Dedication -- Preface-Second Edition -- Preface-First Edition -- Contents -- Chapter 1 Introduction -- 1.1 Deterministic Versus Statistical Phenomena and Models -- 1.2 Statistical Phenomena in Optics -- 1.3 An Outline of the Book -- Chapter 2 Random Variables -- 2.1 Definitions of Probability and Random Variables -- 2.2 Distribution Functions and Density Functions -- 2.3 Extension to Two or More Joint Random Variables -- 2.4 Statistical Averages -- 2.4.1 Moments of a Random Variable -- 2.4.2 Joint Moments of Random Variables -- 2.4.3 Characteristic Functions and Moment-Generating Functions -- 2.5 Transformations of Random Variables -- 2.5.1 General Transformations -- 2.5.2 Monotonic Transformations -- 2.5.3 Multivariate Transformations -- 2.6 Sums of Real Random Variables -- 2.6.1 Two Methods for Finding pZ(z) -- 2.6.2 Independent Random Variables -- 2.6.3 The Central Limit Theorem -- 2.7 Gaussian Random Variables -- 2.7.1 Definitions -- 2.7.2 Special Properties of Gaussian Random Variables -- 2.8 Complex-Valued Random Variables -- 2.8.1 General Descriptions -- 2.8.2 Complex Gaussian Random Variables -- 2.8.3 The Complex Gaussian Moment Theorem -- 2.9 Random Phasor Sums -- 2.9.1 Initial Assumptions -- 2.9.2 Calculations of Means, Variances, and the Correlation Coefficient -- 2.9.3 Statistics of the Length and Phase -- 2.9.4 Constant Phasor Plus a Random Phasor Sum -- 2.9.5 Strong Constant Phasor Plus a Weak Random Phasor Sum -- 2.10 Poisson Random Variables -- Problems -- Chapter 3 Random Processes -- 3.1 Definition and Description of a Random Process -- 3.2 Stationarity and Ergodicity -- 3.3 Spectral Analysis of Random Processes -- 3.3.1 Spectral Densities of a Known Function -- 3.3.2 Spectral Densities of a Random Process -- 3.3.3 Energy and Power Spectral Densities for Linearly Filtered Random Processes.
3.4 Autocorrelation Functions and the Wiener--Khinchin Theorem -- 3.4.1 Definitions and Properties -- 3.4.2 Relationship to the Power Spectral Density -- 3.4.3 An Example Calculation -- 3.4.4 Autocovariance Functions and Structure Functions -- 3.5 Cross-Correlation Functions and Cross-Spectral Densities -- 3.6 Gaussian Random Processes -- 3.6.1 Definition -- 3.6.2 Linearly Filtered Gaussian Random Processes -- 3.6.3 Wide-Sense Stationarity and Strict Stationarity -- 3.6.4 Fourth- and Higher-Order Moments -- 3.7 Poisson Impulse Processes -- 3.7.1 Definition -- 3.7.2 Derivation of Poisson Statistics from Fundamental Hypotheses -- 3.7.3 Derivation of Poisson Statistics from Random Event Times -- 3.7.4 Energy and Power Spectral Densities of Poisson Processes -- 3.7.5 Doubly Stochastic Poisson Processes -- 3.7.6 Spectral Densities of Linearly Filtered Poisson Impulse Processes -- 3.8 Random Processes Derived from Analytic Signals -- 3.8.1 Representation of a Monochromatic Signal by a Complex Signal -- 3.8.2 Representation of a Nonmonochromatic Signal by a Complex Signal -- 3.8.3 Complex Envelopes or Time-Varying Phasors -- 3.8.4 The Analytic Signal as a Complex-Valued Random Process -- 3.9 The Circular Complex Gaussian Random Process -- 3.10 The Karhunen-Loève Expansion -- Problems -- Chapter 4 Some First-Order Statistical Properties of Light -- 4.1 Propagation of Light -- 4.1.1 Monochromatic Light -- 4.1.2 Nonmonochromatic Light -- 4.1.3 Narrowband Light -- 4.1.4 Intensity or Irradiance -- 4.2 Thermal Light -- 4.2.1 Polarized Thermal Light -- 4.2.2 Unpolarized Thermal Light -- 4.3 Partially Polarized Thermal Light -- 4.3.1 Passage of Narrowband Light Through Polarization-Sensitive Systems -- 4.3.2 The Coherency Matrix -- 4.3.3 The Degree of Polarization -- 4.3.4 First-Order Statistics of the Instantaneous Intensity -- 4.4 Single-Mode Laser Light.
4.4.1 An Ideal Oscillation -- 4.4.2 Oscillation with a Random Instantaneous Frequency -- 4.4.3 The Van der Pol Oscillator Model -- 4.4.4 A More Complete Solution for Laser Output Intensity Statistics -- 4.5 Multimode Laser Light -- 4.5.1 Amplitude Statistics -- 4.5.2 Intensity Statistics -- 4.6 Pseudothermal Light Produced by Passing Laser Light Through a Changing Diffuser -- Problems -- Chapter 5 Temporal and Spatial Coherence of Optical Waves -- 5.1 Temporal Coherence -- 5.1.1 Interferometers that Measure Temporal Coherence -- 5.1.2 The Role of the Autocorrelation Function in Predicting the Interferogram -- 5.1.3 Relationship Between the Interferogram and the Power Spectral Density of the Light -- 5.1.4 Fourier Transform Spectroscopy -- 5.1.5 Optical Coherence Tomography -- 5.1.6 Coherence Multiplexing -- 5.2 Spatial Coherence -- 5.2.1 Young's Experiment -- 5.2.2 Mathematical Description of the Experiment -- 5.2.3 Some Geometrical Considerations -- 5.2.4 Interference Under Quasimonochromatic Conditions -- 5.2.5 Cross-Spectral Density and the Spectral Degree of Coherence -- 5.2.6 Summary of the Various Measures of Coherence -- 5.2.7 Effects of Finite Pinhole Size -- 5.3 Separability of Spatial and Temporal Coherence Effects -- 5.4 Propagation of Mutual Coherence -- 5.4.1 Solution Based on the Huygens-Fresnel Principle -- 5.4.2 Wave Equations Governing Propagation of Mutual Coherence -- 5.4.3 Propagation of Cross-Spectral Density -- 5.5 Special Forms of the Mutual Coherence Function -- 5.5.1 A Coherent Field -- 5.5.2 An Incoherent Field -- 5.5.3 A Schell-Model Field -- 5.5.4 A Quasihomogeneous Field -- 5.5.5 Expansion of the Mutual Intensity Function in Coherent Modes -- 5.6 Diffraction of Partially Coherent Light by a Transmitting Structure -- 5.6.1 Effect of a Thin Transmitting Structure on Mutual Intensity.
5.6.2 Calculation of the Observed Intensity Pattern -- 5.6.3 Discussion -- 5.6.4 An Example -- 5.7 The Van Cittert-Zernike Theorem -- 5.7.1 Mathematical Derivation of the Theorem -- 5.7.2 Discussion -- 5.7.3 An Example -- 5.8 A Generalized Van Cittert-Zernike Theorem -- 5.9 Ensemble-Average Coherence -- Problems -- Chapter 6 Some Problems Involving Higher-Order Coherence -- 6.1 Statistical Properties of the Integrated Intensity of Thermal or Pseudothermal Light -- 6.1.1 Mean and Variance of the Integrated Intensity -- 6.1.2 Approximate Form of the Probability Density Function of Integrated Intensity -- 6.1.3 "Exact" Solution for the Probability Density Function of Integrated Intensity -- 6.2 Statistical Properties of Mutual Intensity with Finite Measurement Time -- 6.2.1 Moments of the Real and Imaginary Parts of J12(T) -- 6.3 Classical Analysis of the Intensity Interferometer -- 6.3.1 Amplitude versus Intensity Interferometry -- 6.3.2 Ideal Output of the Intensity Interferometer -- 6.3.3 "Classical" or "Self"-Noise at the Interferometer Output -- Problems -- Chapter 7 Effects of Partial Coherence in Imaging Systems -- 7.1 Preliminaries -- 7.1.1 Passage of Partially Coherent Light through a Thin Transmitting Structure -- 7.1.2 Hopkins' Formula -- 7.1.3 Focal Plane to Focal Plane Coherence Relationships -- 7.1.4 A Generic Optical Imaging System -- 7.2 Space-Domain Calculation of Image Intensity -- 7.2.1 An Approach to Calculate the Mutual Intensity Incident on the Object -- 7.2.2 Zernike's Approximation -- 7.2.3 Critical Illumination and Köhler's Illumination -- 7.3 Frequency Domain Calculation of the Image Intensity Spectrum -- 7.3.1 Mutual Intensity Relations in the Frequency Domain -- 7.3.2 The Transmission Cross-Coefficient -- 7.4 The Incoherent and Coherent Limits -- 7.4.1 The Incoherent Case -- 7.4.2 The Coherent Case.
7.4.3 When is an Optical Imaging System Fully Coherent or Fully Incoherent? -- 7.5 Some Examples -- 7.5.1 The Image of Two Closely Spaced Points -- 7.5.2 The Image of an Amplitude Step -- 7.5.3 The Image of a π-Radian Phase Step -- 7.5.4 The Image of a Sinusoidal Amplitude Object -- 7.6 Image Formation as an Interferometric Process -- 7.6.1 An Imaging System as an Interferometer -- 7.6.2 The Case of an Incoherent Object -- 7.6.3 Gathering Image Information with Interferometers -- 7.6.4 The Michelson Stellar Interferometer -- 7.6.5 The Importance of Phase Information -- 7.6.6 Phase Retrieval in One Dimension -- 7.6.7 Phase Retrieval in Two Dimensions - Iterative Phase Retrieval -- 7.7 The Speckle Effect in Imaging -- 7.7.1 The Origin and First-Order Statistics of Speckle -- 7.7.2 Ensemble-Average Van Cittert-Zernike Theorem -- 7.7.3 The Power Spectral Density of Image Speckle -- 7.7.4 Speckle Suppression -- Problems -- Chapter 8 Imaging Through Randomly Inhomogeneous Media -- 8.1 Effects of Thin Random Screens on Image Quality -- 8.1.1 Assumptions and Simplifications -- 8.1.2 The Average Optical Transfer Function -- 8.1.3 The Average Point-Spread Function -- 8.2 Random-Phase Screens -- 8.2.1 General Formulation -- 8.2.2 The Gaussian Random-Phase Screen -- 8.2.3 Limiting Forms for the Average OTF and the Average PSF for Large Phase Variance -- 8.3 The Earth's Atmosphere as a Thick Phase Screen -- 8.3.1 Definitions and Notation -- 8.3.2 Atmospheric Model -- 8.4 Electromagnetic Wave Propagation Through the Inhomogeneous Atmosphere -- 8.4.1 Wave Equation in an Inhomogeneous Transparent Medium -- 8.4.2 The Born Approximation -- 8.4.3 The Rytov Approximation -- 8.4.4 Intensity Statistics -- 8.5 The Long-Exposure OTF -- 8.5.1 Long-Exposure OTF in Terms of the Wave Structure Function -- 8.5.2 Near-Field Calculation of the Wave Structure Function.
8.5.3 Effects of Smooth Variations of the Refractive Index Structure Constant Cn2.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Dedication -- Preface-Second Edition -- Preface-First Edition -- Contents -- Chapter 1 Introduction -- 1.1 Deterministic Versus Statistical Phenomena and Models -- 1.2 Statistical Phenomena in Optics -- 1.3 An Outline of the Book -- Chapter 2 Random Variables -- 2.1 Definitions of Probability and Random Variables -- 2.2 Distribution Functions and Density Functions -- 2.3 Extension to Two or More Joint Random Variables -- 2.4 Statistical Averages -- 2.4.1 Moments of a Random Variable -- 2.4.2 Joint Moments of Random Variables -- 2.4.3 Characteristic Functions and Moment-Generating Functions -- 2.5 Transformations of Random Variables -- 2.5.1 General Transformations -- 2.5.2 Monotonic Transformations -- 2.5.3 Multivariate Transformations -- 2.6 Sums of Real Random Variables -- 2.6.1 Two Methods for Finding pZ(z) -- 2.6.2 Independent Random Variables -- 2.6.3 The Central Limit Theorem -- 2.7 Gaussian Random Variables -- 2.7.1 Definitions -- 2.7.2 Special Properties of Gaussian Random Variables -- 2.8 Complex-Valued Random Variables -- 2.8.1 General Descriptions -- 2.8.2 Complex Gaussian Random Variables -- 2.8.3 The Complex Gaussian Moment Theorem -- 2.9 Random Phasor Sums -- 2.9.1 Initial Assumptions -- 2.9.2 Calculations of Means, Variances, and the Correlation Coefficient -- 2.9.3 Statistics of the Length and Phase -- 2.9.4 Constant Phasor Plus a Random Phasor Sum -- 2.9.5 Strong Constant Phasor Plus a Weak Random Phasor Sum -- 2.10 Poisson Random Variables -- Problems -- Chapter 3 Random Processes -- 3.1 Definition and Description of a Random Process -- 3.2 Stationarity and Ergodicity -- 3.3 Spectral Analysis of Random Processes -- 3.3.1 Spectral Densities of a Known Function -- 3.3.2 Spectral Densities of a Random Process -- 3.3.3 Energy and Power Spectral Densities for Linearly Filtered Random Processes.

3.4 Autocorrelation Functions and the Wiener--Khinchin Theorem -- 3.4.1 Definitions and Properties -- 3.4.2 Relationship to the Power Spectral Density -- 3.4.3 An Example Calculation -- 3.4.4 Autocovariance Functions and Structure Functions -- 3.5 Cross-Correlation Functions and Cross-Spectral Densities -- 3.6 Gaussian Random Processes -- 3.6.1 Definition -- 3.6.2 Linearly Filtered Gaussian Random Processes -- 3.6.3 Wide-Sense Stationarity and Strict Stationarity -- 3.6.4 Fourth- and Higher-Order Moments -- 3.7 Poisson Impulse Processes -- 3.7.1 Definition -- 3.7.2 Derivation of Poisson Statistics from Fundamental Hypotheses -- 3.7.3 Derivation of Poisson Statistics from Random Event Times -- 3.7.4 Energy and Power Spectral Densities of Poisson Processes -- 3.7.5 Doubly Stochastic Poisson Processes -- 3.7.6 Spectral Densities of Linearly Filtered Poisson Impulse Processes -- 3.8 Random Processes Derived from Analytic Signals -- 3.8.1 Representation of a Monochromatic Signal by a Complex Signal -- 3.8.2 Representation of a Nonmonochromatic Signal by a Complex Signal -- 3.8.3 Complex Envelopes or Time-Varying Phasors -- 3.8.4 The Analytic Signal as a Complex-Valued Random Process -- 3.9 The Circular Complex Gaussian Random Process -- 3.10 The Karhunen-Loève Expansion -- Problems -- Chapter 4 Some First-Order Statistical Properties of Light -- 4.1 Propagation of Light -- 4.1.1 Monochromatic Light -- 4.1.2 Nonmonochromatic Light -- 4.1.3 Narrowband Light -- 4.1.4 Intensity or Irradiance -- 4.2 Thermal Light -- 4.2.1 Polarized Thermal Light -- 4.2.2 Unpolarized Thermal Light -- 4.3 Partially Polarized Thermal Light -- 4.3.1 Passage of Narrowband Light Through Polarization-Sensitive Systems -- 4.3.2 The Coherency Matrix -- 4.3.3 The Degree of Polarization -- 4.3.4 First-Order Statistics of the Instantaneous Intensity -- 4.4 Single-Mode Laser Light.

4.4.1 An Ideal Oscillation -- 4.4.2 Oscillation with a Random Instantaneous Frequency -- 4.4.3 The Van der Pol Oscillator Model -- 4.4.4 A More Complete Solution for Laser Output Intensity Statistics -- 4.5 Multimode Laser Light -- 4.5.1 Amplitude Statistics -- 4.5.2 Intensity Statistics -- 4.6 Pseudothermal Light Produced by Passing Laser Light Through a Changing Diffuser -- Problems -- Chapter 5 Temporal and Spatial Coherence of Optical Waves -- 5.1 Temporal Coherence -- 5.1.1 Interferometers that Measure Temporal Coherence -- 5.1.2 The Role of the Autocorrelation Function in Predicting the Interferogram -- 5.1.3 Relationship Between the Interferogram and the Power Spectral Density of the Light -- 5.1.4 Fourier Transform Spectroscopy -- 5.1.5 Optical Coherence Tomography -- 5.1.6 Coherence Multiplexing -- 5.2 Spatial Coherence -- 5.2.1 Young's Experiment -- 5.2.2 Mathematical Description of the Experiment -- 5.2.3 Some Geometrical Considerations -- 5.2.4 Interference Under Quasimonochromatic Conditions -- 5.2.5 Cross-Spectral Density and the Spectral Degree of Coherence -- 5.2.6 Summary of the Various Measures of Coherence -- 5.2.7 Effects of Finite Pinhole Size -- 5.3 Separability of Spatial and Temporal Coherence Effects -- 5.4 Propagation of Mutual Coherence -- 5.4.1 Solution Based on the Huygens-Fresnel Principle -- 5.4.2 Wave Equations Governing Propagation of Mutual Coherence -- 5.4.3 Propagation of Cross-Spectral Density -- 5.5 Special Forms of the Mutual Coherence Function -- 5.5.1 A Coherent Field -- 5.5.2 An Incoherent Field -- 5.5.3 A Schell-Model Field -- 5.5.4 A Quasihomogeneous Field -- 5.5.5 Expansion of the Mutual Intensity Function in Coherent Modes -- 5.6 Diffraction of Partially Coherent Light by a Transmitting Structure -- 5.6.1 Effect of a Thin Transmitting Structure on Mutual Intensity.

5.6.2 Calculation of the Observed Intensity Pattern -- 5.6.3 Discussion -- 5.6.4 An Example -- 5.7 The Van Cittert-Zernike Theorem -- 5.7.1 Mathematical Derivation of the Theorem -- 5.7.2 Discussion -- 5.7.3 An Example -- 5.8 A Generalized Van Cittert-Zernike Theorem -- 5.9 Ensemble-Average Coherence -- Problems -- Chapter 6 Some Problems Involving Higher-Order Coherence -- 6.1 Statistical Properties of the Integrated Intensity of Thermal or Pseudothermal Light -- 6.1.1 Mean and Variance of the Integrated Intensity -- 6.1.2 Approximate Form of the Probability Density Function of Integrated Intensity -- 6.1.3 "Exact" Solution for the Probability Density Function of Integrated Intensity -- 6.2 Statistical Properties of Mutual Intensity with Finite Measurement Time -- 6.2.1 Moments of the Real and Imaginary Parts of J12(T) -- 6.3 Classical Analysis of the Intensity Interferometer -- 6.3.1 Amplitude versus Intensity Interferometry -- 6.3.2 Ideal Output of the Intensity Interferometer -- 6.3.3 "Classical" or "Self"-Noise at the Interferometer Output -- Problems -- Chapter 7 Effects of Partial Coherence in Imaging Systems -- 7.1 Preliminaries -- 7.1.1 Passage of Partially Coherent Light through a Thin Transmitting Structure -- 7.1.2 Hopkins' Formula -- 7.1.3 Focal Plane to Focal Plane Coherence Relationships -- 7.1.4 A Generic Optical Imaging System -- 7.2 Space-Domain Calculation of Image Intensity -- 7.2.1 An Approach to Calculate the Mutual Intensity Incident on the Object -- 7.2.2 Zernike's Approximation -- 7.2.3 Critical Illumination and Köhler's Illumination -- 7.3 Frequency Domain Calculation of the Image Intensity Spectrum -- 7.3.1 Mutual Intensity Relations in the Frequency Domain -- 7.3.2 The Transmission Cross-Coefficient -- 7.4 The Incoherent and Coherent Limits -- 7.4.1 The Incoherent Case -- 7.4.2 The Coherent Case.

7.4.3 When is an Optical Imaging System Fully Coherent or Fully Incoherent? -- 7.5 Some Examples -- 7.5.1 The Image of Two Closely Spaced Points -- 7.5.2 The Image of an Amplitude Step -- 7.5.3 The Image of a π-Radian Phase Step -- 7.5.4 The Image of a Sinusoidal Amplitude Object -- 7.6 Image Formation as an Interferometric Process -- 7.6.1 An Imaging System as an Interferometer -- 7.6.2 The Case of an Incoherent Object -- 7.6.3 Gathering Image Information with Interferometers -- 7.6.4 The Michelson Stellar Interferometer -- 7.6.5 The Importance of Phase Information -- 7.6.6 Phase Retrieval in One Dimension -- 7.6.7 Phase Retrieval in Two Dimensions - Iterative Phase Retrieval -- 7.7 The Speckle Effect in Imaging -- 7.7.1 The Origin and First-Order Statistics of Speckle -- 7.7.2 Ensemble-Average Van Cittert-Zernike Theorem -- 7.7.3 The Power Spectral Density of Image Speckle -- 7.7.4 Speckle Suppression -- Problems -- Chapter 8 Imaging Through Randomly Inhomogeneous Media -- 8.1 Effects of Thin Random Screens on Image Quality -- 8.1.1 Assumptions and Simplifications -- 8.1.2 The Average Optical Transfer Function -- 8.1.3 The Average Point-Spread Function -- 8.2 Random-Phase Screens -- 8.2.1 General Formulation -- 8.2.2 The Gaussian Random-Phase Screen -- 8.2.3 Limiting Forms for the Average OTF and the Average PSF for Large Phase Variance -- 8.3 The Earth's Atmosphere as a Thick Phase Screen -- 8.3.1 Definitions and Notation -- 8.3.2 Atmospheric Model -- 8.4 Electromagnetic Wave Propagation Through the Inhomogeneous Atmosphere -- 8.4.1 Wave Equation in an Inhomogeneous Transparent Medium -- 8.4.2 The Born Approximation -- 8.4.3 The Rytov Approximation -- 8.4.4 Intensity Statistics -- 8.5 The Long-Exposure OTF -- 8.5.1 Long-Exposure OTF in Terms of the Wave Structure Function -- 8.5.2 Near-Field Calculation of the Wave Structure Function.

8.5.3 Effects of Smooth Variations of the Refractive Index Structure Constant Cn2.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.