ORPP logo
Image from Google Jackets

Heterogeneous Catalysis at Nanoscale for Energy Applications.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2015Edition: 1st edDescription: 1 online resource (361 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118843482
Subject(s): Genre/Form: Additional physical formats: Print version:: Heterogeneous Catalysis at Nanoscale for Energy ApplicationsLOC classification:
  • QD505 -- .H484 2015eb
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Chapter 1 Introduction -- References -- Chapter 2 Chemical Synthesis of Nanoscale Heterogeneous Catalysts -- 2.1 Introduction -- 2.2 Brief Overview of Heterogeneous Catalysts -- 2.3 Chemical Synthetic Approaches -- 2.3.1 Colloidal Synthesis -- 2.3.2 Shape Control of Catalysts in Colloidal Synthesis -- 2.3.3 Control of Crystalline Phase of Intermetallic Nanostructures -- 2.3.4 Other Modes of Formation for Complex Nanostructures -- 2.4 Core-Shell Nanoparticles and Controls of Surface Compositions and Surface Atomic Arrangements -- 2.4.1 New Development on the Preparation of Colloidal Core-Shell Nanoparticles -- 2.4.2 Electrochemical Methods to Core-Shell Nanostructures -- 2.4.3 Control of Surface Composition via Surface Segregation -- 2.5 Summary -- References -- Chapter 3 Physical Fabrication of Nanostructured Heterogeneous Catalysts -- 3.1 Introduction -- 3.2 Cluster Sources -- 3.2.1 Thermal Vaporization Source -- 3.2.2 Laser Ablation Source -- 3.2.3 Magnetron Cluster Source -- 3.2.4 Arc Cluster Ion Source -- 3.3 Mass Analyzers -- 3.3.1 Neutral Cluster Beams -- 3.3.2 Quadrupole Mass Analyzer -- 3.3.3 Lateral TOF Mass Filter -- 3.3.4 Magnetic Sector Mass Selector -- 3.3.5 Quadrupole Deflector (Bender) -- 3.4 Survey of Cluster Deposition Apparatuses in Catalysis Studies -- 3.4.1 Laser Ablation Source with a Quadrupole Mass Analyzer at Argonne National Lab -- 3.4.2 ACIS with a Quadrupole Deflector at the Universität Rostock -- 3.4.3 Magnetron Cluster Source with a Lateral TOF Mass Filter at the University of Birmingham -- 3.4.4 Laser Ablation Cluster Source with a Quadrupole Mass Selector at the Technische Universität München -- 3.4.5 Laser Ablation Cluster Source with a Quadrupole Mass Analyzer at the University of Utah.
3.4.6 Laser Ablation Cluster Source with a Magnetic Sector Mass Selector at the University of California, Santa Barbara -- 3.4.7 Magnetron Cluster Source with a Quadrupole Mass Filter at the Toyota Technological Institute -- 3.4.8 PACIS with a Magnetic Sector Mass Selector at Universität Konstanz -- 3.4.9 Magnetron Cluster Source with a Magnetic Sector at Johns Hopkins University -- 3.4.10 Magnetron Cluster Source with a Magnetic Sector at HZB -- 3.4.11 Magnetron Sputtering Source with a Quadrupole Mass Filter at the Technical University of Denmark -- 3.4.12 CORDIS with a Quadrupole Mass Filter at the Lausanne Group -- 3.4.13 Electron Impact Source with a Quadrupole Mass Selector at the Universität Karlsruhe -- 3.4.14 CORDIS with a Quadrupole Mass Analyzer at the Universität Ulm -- 3.4.15 Magnetron Cluster Source with a Lateral TOF Mass Filter at the Universität Dortmund -- 3.4.16 Z-Spray Source with a Quadrupole Mass Filter for Gas-Phase Investigations at FELIX -- 3.4.17 Laser Ablation Source with an Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Investigations at the Technische Universität Berlin -- Acknowledgments -- References -- Chapter 4 Ex Situ Characterization -- 4.1 Introduction -- 4.2 Ex Situ Characterization Techniques -- 4.2.1 X-Ray Absorption Spectroscopy -- 4.2.2 Electron Spectroscopy -- 4.2.3 Electron Microscopy -- 4.2.4 Scanning Probe Microscopy -- 4.2.5 Mössbauer Spectroscopy -- 4.3 Some Examples on Ex Situ Characterization of Nanocatalysts for Energy Applications -- 4.3.1 Illustrating Structural and Electronic Properties of Complex Nanocatalysts -- 4.3.2 Elucidating Structural Characteristics of Catalysts at the Nanometer or Atomic Level -- 4.3.3 Pinpointing the Nature of the Active Sites on Nanocatalysts -- 4.4 Conclusions -- Acknowledgments -- References.
Chapter 5 Applications of Soft X-Ray Absorption Spectroscopy for In Situ Studies of Catalysts at Nanoscale -- 5.1 Introduction -- 5.2 In Situ SXAS under Reaction Conditions -- 5.3 Examples of In Situ SXAS Studies under Reaction Conditions Using Reaction Cells -- 5.3.1 Atmospheric Corrosion of Metal Films -- 5.3.2 Cobalt Nanoparticles under Reaction Conditions -- 5.3.3 Electrochemical Corrosion of Cu in Aqueous NaHCO3 Solution -- 5.4 Summary -- References -- Chapter 6 First-Principles Approaches to Understanding Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Computational Models -- 6.2.1 Electronic Structure Methods -- 6.2.2 System Models -- 6.3 NOx Reduction -- 6.4 Adsorption at Metal Surfaces -- 6.4.1 Neutral Adsorbates -- 6.4.2 Charged Adsorbates -- 6.5 Elementary Surface Reactions Between Adsorbates -- 6.5.1 Reaction Thermodynamics -- 6.5.2 Reaction Kinetics -- 6.6 Coverage Effects on Reaction and Activation Energies at Metal Surfaces -- 6.7 Summary -- References -- Chapter 7 Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts -- 7.1 Introduction -- 7.2 Trends-Based Studies in Computational Catalysis -- 7.2.1 Early Groundwork for Computational Catalyst Screening -- 7.2.2 Volcano Plots and Rate Theory Models -- 7.2.3 Scaling Relations, BEP Relations, and Descriptor Determination -- 7.3 Computational Screening of Heterogeneous Catalysts and Electrocatalysts -- 7.3.1 Computational Catalyst Screening Strategies -- 7.4 Challenges and New Frontiers in Computational Catalyst Screening -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Catalytic Kinetics and Dynamics -- 8.1 Introduction -- 8.2 Basics of Catalyst Functionality, Mechanisms, and Elementary Reactions on Surfaces -- 8.3 Transition State Theory, Collision Theory, and Rate Constants -- 8.4 Density Functional Theory Calculations.
8.4.1 Calculation of Energetics and Coverage Effects -- 8.4.2 Calculation of Vibrational Frequencies -- 8.5 Thermodynamic Consistency of the DFT-Predicted Energetics -- 8.6 State Properties from Statistical Thermodynamics -- 8.6.1 Strongly Bound Adsorbates -- 8.6.2 Weakly Bound Adsorbates -- 8.7 Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters -- 8.7.1 Linear Scaling Relationships -- 8.7.2 Heat Capacity and Surface Entropy Estimation -- 8.7.3 Brønsted-Evans-Polanyi Relationships -- 8.8 Analysis Tools for Microkinetic Modeling -- 8.8.1 Rates in Microkinetic Modeling -- 8.8.2 Reaction Path Analysis and Partial Equilibrium Analysis -- 8.8.3 Rate-Determining Steps, Most Important Surface Intermediates, and Most Abundant Surface Intermediates -- 8.8.4 Calculation of the Overall Reaction Order and Apparent Activation Energy -- 8.9 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Catalysts for Biofuels -- 9.1 Introduction -- 9.2 Lignocellulosic Biomass -- 9.2.1 Cellulose -- 9.2.2 Hemicellulose -- 9.2.3 Lignin -- 9.3 Carbohydrate Upgrading -- 9.3.1 Zeolitic Upgrading of Cellulosic Feedstocks -- 9.3.2 Levulinic Acid Upgrading -- 9.3.3 GVL Upgrading -- 9.3.4 Aqueous-Phase Processing -- 9.4 Lignin Conversion -- 9.4.1 Zeolite Upgrading of Lignin Feedstocks -- 9.4.2 Catalysts for Hydrodeoxygenation of Lignin -- 9.4.3 Selective Unsupported Catalyst for Lignin Depolymerization -- 9.5 Continued Efforts for the Development of Robust Catalysts -- References -- Chapter 10 Development of New Gold Catalysts for Removing CO from H2 -- 10.1 Introduction -- 10.2 General Description of Catalyst Development -- 10.3 Development of WGS catalysts -- 10.3.1 Initially Developed Catalysts -- 10.3.2 Fe2O3-Based Gold Catalysts -- 10.3.3 CeO2-Based Gold Catalysts -- 10.3.4 TiO2- or ZrO2-Based Gold Catalysts.
10.3.5 Mixed-Oxide Supports with 1:1 Composition -- 10.3.6 Bimetallic Catalysts -- 10.4 Development of New Gold Catalysts for PROX -- 10.4.1 General Considerations -- 10.4.2 CeO2-Based Gold Catalysts -- 10.4.3 TiO2-Based Gold Catalysts -- 10.4.4 Al2O3-Based Gold Catalysts -- 10.4.5 Mixed Oxide Supports with 1:1 Composition -- 10.4.6 Other Oxide-Based Gold Catalysts -- 10.4.7 Supported Bimetallic catalysts -- 10.5 Perspectives -- Acknowledgments -- References -- Chapter 11 Photocatalysis in Generation of Hydrogen from Water -- 11.1 Solar Energy Conversion -- 11.1.1 Solar Energy Conversion Technology for Producing Fuels and Chemicals -- 11.1.2 Solar Spectrum and STH Efficiency -- 11.2 Semiconductor particles: Optical and Electronic Nature -- 11.2.1 Reaction Sequence and Principles of Overall Water Splitting and Reaction Step Timescales -- 11.2.2 Number of Photons Striking a Single Particle -- 11.2.3 Absorption Depth of Light Incident on Powder Photocatalyst -- 11.2.4 Degree of Band Bending in Semiconductor Powder -- 11.2.5 Band Gap and Flat-Band Potential of Semiconductor -- 11.3 Photocatalyst Materials for Overall Water Splitting: UV to Visible Light Response -- 11.3.1 UV Photocatalysts: Oxides -- 11.3.2 Visible-Light Photocatalysts: Band Engineering of Semiconductor Materials Containing Transition Metals -- 11.3.3 Visible-Light Photocatalysts: Organic Semiconductors as Water-Splitting Photocatalysts -- 11.3.4 Z-Scheme Approach: Two-Photon Process -- 11.3.5 Defects and Recombination in Semiconductor Bulk -- 11.4 Cocatalysts for Photocatalytic Overall Water Splitting -- 11.4.1 Metal Nanoparticles as Hydrogen Evolution Cocatalysts: Novel Core/Shell Structure -- 11.4.2 Reaction Rate Expression on Active Catalytic Centers for Redox Reaction in Solution -- 11.4.3 Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation.
11.4.4 Metal Oxides as Oxygen Evolution Cocatalyst.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Chapter 1 Introduction -- References -- Chapter 2 Chemical Synthesis of Nanoscale Heterogeneous Catalysts -- 2.1 Introduction -- 2.2 Brief Overview of Heterogeneous Catalysts -- 2.3 Chemical Synthetic Approaches -- 2.3.1 Colloidal Synthesis -- 2.3.2 Shape Control of Catalysts in Colloidal Synthesis -- 2.3.3 Control of Crystalline Phase of Intermetallic Nanostructures -- 2.3.4 Other Modes of Formation for Complex Nanostructures -- 2.4 Core-Shell Nanoparticles and Controls of Surface Compositions and Surface Atomic Arrangements -- 2.4.1 New Development on the Preparation of Colloidal Core-Shell Nanoparticles -- 2.4.2 Electrochemical Methods to Core-Shell Nanostructures -- 2.4.3 Control of Surface Composition via Surface Segregation -- 2.5 Summary -- References -- Chapter 3 Physical Fabrication of Nanostructured Heterogeneous Catalysts -- 3.1 Introduction -- 3.2 Cluster Sources -- 3.2.1 Thermal Vaporization Source -- 3.2.2 Laser Ablation Source -- 3.2.3 Magnetron Cluster Source -- 3.2.4 Arc Cluster Ion Source -- 3.3 Mass Analyzers -- 3.3.1 Neutral Cluster Beams -- 3.3.2 Quadrupole Mass Analyzer -- 3.3.3 Lateral TOF Mass Filter -- 3.3.4 Magnetic Sector Mass Selector -- 3.3.5 Quadrupole Deflector (Bender) -- 3.4 Survey of Cluster Deposition Apparatuses in Catalysis Studies -- 3.4.1 Laser Ablation Source with a Quadrupole Mass Analyzer at Argonne National Lab -- 3.4.2 ACIS with a Quadrupole Deflector at the Universität Rostock -- 3.4.3 Magnetron Cluster Source with a Lateral TOF Mass Filter at the University of Birmingham -- 3.4.4 Laser Ablation Cluster Source with a Quadrupole Mass Selector at the Technische Universität München -- 3.4.5 Laser Ablation Cluster Source with a Quadrupole Mass Analyzer at the University of Utah.

3.4.6 Laser Ablation Cluster Source with a Magnetic Sector Mass Selector at the University of California, Santa Barbara -- 3.4.7 Magnetron Cluster Source with a Quadrupole Mass Filter at the Toyota Technological Institute -- 3.4.8 PACIS with a Magnetic Sector Mass Selector at Universität Konstanz -- 3.4.9 Magnetron Cluster Source with a Magnetic Sector at Johns Hopkins University -- 3.4.10 Magnetron Cluster Source with a Magnetic Sector at HZB -- 3.4.11 Magnetron Sputtering Source with a Quadrupole Mass Filter at the Technical University of Denmark -- 3.4.12 CORDIS with a Quadrupole Mass Filter at the Lausanne Group -- 3.4.13 Electron Impact Source with a Quadrupole Mass Selector at the Universität Karlsruhe -- 3.4.14 CORDIS with a Quadrupole Mass Analyzer at the Universität Ulm -- 3.4.15 Magnetron Cluster Source with a Lateral TOF Mass Filter at the Universität Dortmund -- 3.4.16 Z-Spray Source with a Quadrupole Mass Filter for Gas-Phase Investigations at FELIX -- 3.4.17 Laser Ablation Source with an Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Investigations at the Technische Universität Berlin -- Acknowledgments -- References -- Chapter 4 Ex Situ Characterization -- 4.1 Introduction -- 4.2 Ex Situ Characterization Techniques -- 4.2.1 X-Ray Absorption Spectroscopy -- 4.2.2 Electron Spectroscopy -- 4.2.3 Electron Microscopy -- 4.2.4 Scanning Probe Microscopy -- 4.2.5 Mössbauer Spectroscopy -- 4.3 Some Examples on Ex Situ Characterization of Nanocatalysts for Energy Applications -- 4.3.1 Illustrating Structural and Electronic Properties of Complex Nanocatalysts -- 4.3.2 Elucidating Structural Characteristics of Catalysts at the Nanometer or Atomic Level -- 4.3.3 Pinpointing the Nature of the Active Sites on Nanocatalysts -- 4.4 Conclusions -- Acknowledgments -- References.

Chapter 5 Applications of Soft X-Ray Absorption Spectroscopy for In Situ Studies of Catalysts at Nanoscale -- 5.1 Introduction -- 5.2 In Situ SXAS under Reaction Conditions -- 5.3 Examples of In Situ SXAS Studies under Reaction Conditions Using Reaction Cells -- 5.3.1 Atmospheric Corrosion of Metal Films -- 5.3.2 Cobalt Nanoparticles under Reaction Conditions -- 5.3.3 Electrochemical Corrosion of Cu in Aqueous NaHCO3 Solution -- 5.4 Summary -- References -- Chapter 6 First-Principles Approaches to Understanding Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Computational Models -- 6.2.1 Electronic Structure Methods -- 6.2.2 System Models -- 6.3 NOx Reduction -- 6.4 Adsorption at Metal Surfaces -- 6.4.1 Neutral Adsorbates -- 6.4.2 Charged Adsorbates -- 6.5 Elementary Surface Reactions Between Adsorbates -- 6.5.1 Reaction Thermodynamics -- 6.5.2 Reaction Kinetics -- 6.6 Coverage Effects on Reaction and Activation Energies at Metal Surfaces -- 6.7 Summary -- References -- Chapter 7 Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts -- 7.1 Introduction -- 7.2 Trends-Based Studies in Computational Catalysis -- 7.2.1 Early Groundwork for Computational Catalyst Screening -- 7.2.2 Volcano Plots and Rate Theory Models -- 7.2.3 Scaling Relations, BEP Relations, and Descriptor Determination -- 7.3 Computational Screening of Heterogeneous Catalysts and Electrocatalysts -- 7.3.1 Computational Catalyst Screening Strategies -- 7.4 Challenges and New Frontiers in Computational Catalyst Screening -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Catalytic Kinetics and Dynamics -- 8.1 Introduction -- 8.2 Basics of Catalyst Functionality, Mechanisms, and Elementary Reactions on Surfaces -- 8.3 Transition State Theory, Collision Theory, and Rate Constants -- 8.4 Density Functional Theory Calculations.

8.4.1 Calculation of Energetics and Coverage Effects -- 8.4.2 Calculation of Vibrational Frequencies -- 8.5 Thermodynamic Consistency of the DFT-Predicted Energetics -- 8.6 State Properties from Statistical Thermodynamics -- 8.6.1 Strongly Bound Adsorbates -- 8.6.2 Weakly Bound Adsorbates -- 8.7 Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters -- 8.7.1 Linear Scaling Relationships -- 8.7.2 Heat Capacity and Surface Entropy Estimation -- 8.7.3 Brønsted-Evans-Polanyi Relationships -- 8.8 Analysis Tools for Microkinetic Modeling -- 8.8.1 Rates in Microkinetic Modeling -- 8.8.2 Reaction Path Analysis and Partial Equilibrium Analysis -- 8.8.3 Rate-Determining Steps, Most Important Surface Intermediates, and Most Abundant Surface Intermediates -- 8.8.4 Calculation of the Overall Reaction Order and Apparent Activation Energy -- 8.9 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Catalysts for Biofuels -- 9.1 Introduction -- 9.2 Lignocellulosic Biomass -- 9.2.1 Cellulose -- 9.2.2 Hemicellulose -- 9.2.3 Lignin -- 9.3 Carbohydrate Upgrading -- 9.3.1 Zeolitic Upgrading of Cellulosic Feedstocks -- 9.3.2 Levulinic Acid Upgrading -- 9.3.3 GVL Upgrading -- 9.3.4 Aqueous-Phase Processing -- 9.4 Lignin Conversion -- 9.4.1 Zeolite Upgrading of Lignin Feedstocks -- 9.4.2 Catalysts for Hydrodeoxygenation of Lignin -- 9.4.3 Selective Unsupported Catalyst for Lignin Depolymerization -- 9.5 Continued Efforts for the Development of Robust Catalysts -- References -- Chapter 10 Development of New Gold Catalysts for Removing CO from H2 -- 10.1 Introduction -- 10.2 General Description of Catalyst Development -- 10.3 Development of WGS catalysts -- 10.3.1 Initially Developed Catalysts -- 10.3.2 Fe2O3-Based Gold Catalysts -- 10.3.3 CeO2-Based Gold Catalysts -- 10.3.4 TiO2- or ZrO2-Based Gold Catalysts.

10.3.5 Mixed-Oxide Supports with 1:1 Composition -- 10.3.6 Bimetallic Catalysts -- 10.4 Development of New Gold Catalysts for PROX -- 10.4.1 General Considerations -- 10.4.2 CeO2-Based Gold Catalysts -- 10.4.3 TiO2-Based Gold Catalysts -- 10.4.4 Al2O3-Based Gold Catalysts -- 10.4.5 Mixed Oxide Supports with 1:1 Composition -- 10.4.6 Other Oxide-Based Gold Catalysts -- 10.4.7 Supported Bimetallic catalysts -- 10.5 Perspectives -- Acknowledgments -- References -- Chapter 11 Photocatalysis in Generation of Hydrogen from Water -- 11.1 Solar Energy Conversion -- 11.1.1 Solar Energy Conversion Technology for Producing Fuels and Chemicals -- 11.1.2 Solar Spectrum and STH Efficiency -- 11.2 Semiconductor particles: Optical and Electronic Nature -- 11.2.1 Reaction Sequence and Principles of Overall Water Splitting and Reaction Step Timescales -- 11.2.2 Number of Photons Striking a Single Particle -- 11.2.3 Absorption Depth of Light Incident on Powder Photocatalyst -- 11.2.4 Degree of Band Bending in Semiconductor Powder -- 11.2.5 Band Gap and Flat-Band Potential of Semiconductor -- 11.3 Photocatalyst Materials for Overall Water Splitting: UV to Visible Light Response -- 11.3.1 UV Photocatalysts: Oxides -- 11.3.2 Visible-Light Photocatalysts: Band Engineering of Semiconductor Materials Containing Transition Metals -- 11.3.3 Visible-Light Photocatalysts: Organic Semiconductors as Water-Splitting Photocatalysts -- 11.3.4 Z-Scheme Approach: Two-Photon Process -- 11.3.5 Defects and Recombination in Semiconductor Bulk -- 11.4 Cocatalysts for Photocatalytic Overall Water Splitting -- 11.4.1 Metal Nanoparticles as Hydrogen Evolution Cocatalysts: Novel Core/Shell Structure -- 11.4.2 Reaction Rate Expression on Active Catalytic Centers for Redox Reaction in Solution -- 11.4.3 Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation.

11.4.4 Metal Oxides as Oxygen Evolution Cocatalyst.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.