Nanotechnology and Functional Foods : Effective Delivery of Bioactive Ingredients.
Material type:
- text
- computer
- online resource
- 9781118462164
- 664
- TP248.65.F66 -- .N366 2015eb
Cover -- Title Page -- Copyright Page -- Contents -- Contributors -- Chapter 1 Introduction -- Chapter 2 Nutrient absorption in the human gastrointestinal tract -- 2.1 INTRODUCTION -- 2.2 OVERVIEW OF THE GASTROINTESTINAL TRACT -- 2.3 THE GASTROINTESTINAL TRACT -- 2.4 MACRONUTRIENTS -- 2.4.1 Carbohydrates -- 2.4.2 Fats -- 2.4.3 Proteins -- 2.5 ALCOHOL -- 2.6 MICRONUTRIENTS -- 2.6.1 Fat-soluble vitamins -- 2.6.2 Water-soluble vitamins -- 2.7 WATER AND MINERALS -- 2.7.1 Water -- 2.7.2 Electrolytes -- 2.7.3 Sodium -- 2.7.4 Potassium -- 2.7.5 Chloride -- 2.7.6 Calcium -- 2.7.7 Magnesium -- 2.7.8 Phosphorus -- 2.7.9 Sulfur -- 2.8 TRACE MINERALS -- 2.8.1 Iron -- 2.8.2 Zinc -- 2.8.3 Copper -- 2.8.4 Manganese -- 2.8.5 Selenium -- 2.8.6 Chromium -- 2.8.7 Iodine -- 2.8.8 Fluoride -- 2.9 PHYTOCHEMICALS -- 2.9.1 Carotenoids -- 2.9.2 Flavonoids -- 2.10 IMPLICATIONS IN HEALTH AND DISEASE -- 2.11 USE OF NANOPARTICLES TO ENHANCE ABSORPTION OF NUTRIENTS -- References -- Chapter 3 Cellular fate of delivery systems and entrapped bioactives -- 3.1 CELLULAR FATE OF NANOPARTICLES - AN EXPERIMENTAL PERSPECTIVE -- 3.1.1 Nanoparticle detection and quantification -- 3.1.2 Effect of NP properties on cell uptake -- 3.1.3 Fate of loaded NPs in the cell with implications on bioactive functionality -- 3.2 CELLULAR UPTAKE OF SMALL MOLECULES AND NPs BY MEMBRANE PENETRATION - A MOLECULAR SIMULATION PERSPECTIVE -- 3.2.1 Small molecules and drugs interacting with lipid bilayers -- 3.2.2 Polymers and NPs interacting with lipid bilayers -- 3.3 CONCLUSIONS -- References -- Chapter 4 Interfacial science and the creation of nanoparticles -- 4.1 INTRODUCTION -- 4.2 FUNDAMENTALS OF INTERFACIAL SCIENCE -- 4.2.1 Equilibrium surface properties -- 4.2.2 Dynamic surface properties -- 4.2.3 Self-assembly and phase separation -- 4.2.4 Interactions at the interface.
4.3 INTERFACIAL PROPERTIES IN NANOPARTICLE FORMATION -- 4.3.1 Lyotropic nanoparticles -- 4.3.2 Self-assembled nanoparticles -- 4.4 INTERFACIAL EFFECTS IN DISTRIBUTION AND RELEASE -- Acknowledgments -- References -- Chapter 5 Controlling properties of micro- to nano-sized dispersions using emulsification devices -- 5.1 INTRODUCTION -- 5.2 FUNDAMENTALS OF EMULSIFICATION PROCESSES -- 5.3 CONVENTIONAL MECHANICAL EMULSIFICATION -- 5.3.1 High-speed mixer -- 5.3.2 Colloid mill -- 5.3.3 High-pressure homogenizer (microfluidizer) -- 5.3.4 Ultrasonic homogenizer -- 5.4 PREPARATION OF QUASI-MONODISPERSE EMULSIONS USING MEMBRANE EMULSIFICATION -- 5.5 PREPARATION OF MONODISPERSE EMULSIONS USING MICROFABRICATED EMULSIFICATION DEVICES -- 5.5.1 Microfluidic emulsification -- 5.5.2 Microchannel emulsification -- 5.5.3 Edge-based droplet generation emulsification -- 5.6 EMULSION PROPERTIES AND APPLICATIONS -- 5.7 CONCLUSIONS -- References -- Chapter 6 Delivery systems for food applications: an overview of preparation methods and encapsulation, release, and dispersion properties -- 6.1 INTRODUCTION -- 6.2 METHODS OF FABRICATING DELIVERY SYSTEMS AND THEIR TYPICAL DIMENSIONS -- 6.2.1 Top-down methods -- 6.2.2 Bottom-up methods -- 6.3 ENCAPSULATION EFFICIENCIES OF VARIOUS DELIVERY SYSTEMS -- 6.4 RELEASE PROPERTIES OF ENCAPSULATED COMPOUNDS -- 6.4.1 Diffusion-controlled release mechanism -- 6.4.2 Release properties in evolving particle structures -- 6.4.3 Triggered release -- 6.5 STABILITY OF MICRO- AND NANOPARTICLES IN AQUEOUS DISPERSIONS -- 6.5.1 Stability of particles -- 6.5.2 Controlling particle precipitation and motion -- 6.5.3 Controlling particle aggregation -- 6.6 CONCLUSIONS -- References -- Chapter 7 Characterization of nanoscale delivery systems -- 7.1 Introduction -- 7.2 Particle-size measurement -- 7.3 ζ-POTENTIAL MEASUREMENT.
7.3.1 Principle of the technique -- 7.3.2 Applications of ζ-potential measurement -- 7.4 SCANNING AND TRANSMISSION ELECTRON MICROSCOPY -- 7.4.1 Principle of techniques -- 7.4.2 Applications of SEM and TEM -- 7.5 ELECTRON SPIN RESONANCE SPECTROSCOPY -- 7.5.1 Principle of ESR spectroscopy -- 7.5.2 Applications of the ESR technique using nanoscale particles -- 7.6 FLUORESCENCE SPECTROSCOPY AND IMAGING -- 7.6.1 Principle of fluorescence spectroscopy and imaging -- 7.6.2 Applications of fluorescence spectroscopy and imaging -- 7.6.3 Transport of hydroxyl radicals -- 7.6.4 Transport of peroxyl radicals -- 7.6.5 Permeation of oxygen within nanoparticles -- 7.6.6 Fluorescence imaging -- 7.7 ATOMIC FORCE MICROSCOPY -- 7.7.1 Principle of atomic force microscopy -- 7.7.2 Applications of AFM -- 7.8 Conclusions -- References -- Chapter 8 Impact of delivery systems on the chemical stability of bioactive lipids -- 8.1 INTRODUCTION -- 8.2 PATHWAYS OF DEGRADATION OF BIOACTIVE LIPIDS -- 8.2.1 Free radicals -- 8.2.2 Transition metals -- 8.2.3 Light promoted oxidation -- 8.2.4 Lipoxygenase -- 8.3 BIOACTIVE LIPID DELIVERY SYSTEMS AS A MEANS TO CONTROL LIPID OXIDATION -- 8.3.1 Conventional emulsions -- 8.3.2 Multilayer emulsions -- 8.3.3 Filled hydrogel particles -- 8.3.4 Microemulsions and nanoemulsions -- 8.3.5 Solid lipid particles -- 8.4 ANTIOXIDANTS IN BIOACTIVE LIPID DELIVERY SYSTEMS -- 8.5 CONCLUSIONS -- References -- Chapter 9 Encapsulation strategies to stabilize a natural folate, L-5-methyltetrahydrofolic acid, for food fortification practices -- 9.1 INTRODUCTION -- 9.2 FOLATE FORTIFICATION MANDATES -- 9.3 LIMITATIONS OF FORTIFYING FOODS WITH NATURAL FOLATES -- 9.4 ENCAPSULATION STRATEGIES -- 9.5 COATING MATERIALS FOR ENCAPSULATION OF L-5-MTHF -- 9.6 CO-MICROENCAPSULATION OF L-5-MTHF WITH ANTIOXIDANT.
9.7 SAFETY AND EFFICACY OF MICRO- AND NANOENCAPUSLATION OF FOLATES -- References -- Chapter 10 The application of nanoencapsulation to enhance the bioavailability and distribution of polyphenols -- 10.1 INTRODUCTION -- 10.2 BIOAVAILABILITY OF POLYPHENOLS -- 10.3 NANOENCAPSULATION: CHARACTERISTICS AND FORMULATIONS -- 10.4 TRANSPORT OF NPs ACROSS INTESTINAL MUCOSA -- 10.5 NANOPARTICLES AS POTENTIAL DELIVERY SYSTEMS OF POLYPHENOLS -- 10.5.1 Curcumin -- 10.5.2 Epigallocatechin-3-gallate -- 10.5.3 Quercetin -- 10.5.4 Resveratrol -- 10.6 CONCLUSIONS -- References -- Chapter 11 Properties and applications of multilayer and nanoscale emulsions -- 11.1 INTRODUCTION -- 11.2 CLASSIFICATION OF EMULSIONS -- 11.3 EMULSION STABILITY -- 11.3.1 Strength of the interfacial film -- 11.3.2 Presence of electrical and steric barriers -- 11.3.3 Droplet size distribution -- 11.3.4 Phase volume ratio -- 11.3.5 Continuous phase viscosity -- 11.3.6 Temperature -- 11.4 MULTILAYER EMULSIONS -- 11.4.1 Low molecular weight surfactants -- 11.4.2 Biopolymers as emulsifiers -- 11.4.3 Polyelectrolyte properties -- 11.4.4 pH -- 11.4.5 Salt and ionic strength -- 11.4.6 Temperature and freeze-thaw stability -- 11.4.7 Preparation of multilayer emulsions -- 11.4.8 Protein-polysaccharide complexation -- 11.5 NANOEMULSIONS -- 11.5.1 Nanoemulsion preparation -- 11.5.2 Applications of nanoemulsions -- References -- Chapter 12 Liposome as efficient system for intracellular delivery of bioactive molecules -- 12.1 INTRODUCTION -- 12.2 LIPOSOME CLASSIFICATION -- 12.3 LIPOSOME PROPERTIES -- 12.4 POTENTIAL USE OF LIPOSOMES AS A DDS IN DIFFERENT ROUTES OF ADMINISTRATION -- 12.5 PREPARATION AND PHYSICOCHEMICAL CHARACTERIZATION OF LIPOSOMAL SYSTEMS CONTAINING CS AS THE BIOACTIVE MOLECULE -- 12.5.1 General method of liposome preparation and drug loading.
12.5.2 Preparation of liposomal systems containing CS -- 12.5.3 Liposome structure and characterization -- 12.5.4 Size, polydispersity index, and ζ-potential of the liposome system -- 12.5.5 Morphology of the liposome system -- 12.5.6 Determination of encapsulation efficiency -- 12.5.7 Stability of the liposome system containing CS -- 12.6 CELL-LIPOSOME INTERACTION -- 12.6.1 Biocompatibility tests in cell culture -- 12.6.2 Uptake of liposomes entrapping bioactive molecules by cells -- 12.6.3 Ability of liposomes to modify cell response in different models of inflammation -- 12.7 CONCLUSIONS AND FUTURE PERSPECTIVE -- Acknowledgments -- References -- Chapter 13 Solid lipid nanoparticles and applications -- 13.1 INTRODUCTION -- 13.2 SOLID LIPID NANOPARTICLES AS DELIVERY SYSTEMS -- 13.3 MANUFACTURING SLN DISPERSIONS -- 13.3.1 Hot homogenization -- 13.3.2 Cold homogenization -- 13.3.3 Solvent emulsification/evaporation -- 13.3.4 Precipitation from warm microemulsions -- 13.3.5 Precipitation from organic solutions -- 13.4 APPLICATIONS OF SLN AS CARRIERS FOR FOOD BIOACTIVE COMPONENTS -- 13.4.1 Nanostructured lipid carriers and SLNs for encapsulation of β-carotene -- 13.4.2 Solid lipid nanoparticles for the encapsulation of ergocalciferol (D2) -- 13.4.3 Solid lipid nanoparticles for enhanced bioavailability of γ-tocotrienol -- 13.4.4 Solid lipid nanoparticles for delivery of coenzyme Q10 -- 13.4.5 Solid lipid nanoparticles to enhance bioavailability of curcumin -- 13.4.6 Solid lipid nanoparticles for enhanced bioavailability of quercetin -- 13.4.7 SLN for antimicrobial delivery -- 13.4.8 Solid lipid nanoparticles for encapsulation of resveratrol -- 13.5 FINAL REMARKS -- References -- Chapter 14 Protein-polysaccharide complexes for effective delivery of bioactive functional food ingredients -- 14.1 INTRODUCTION.
14.2 UNDERSTANDING PROTEIN-POLYSACCHARIDE COMPLEXES.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.