ORPP logo
Image from Google Jackets

Advanced Electrical and Electronics Materials : Processes and Applications.

By: Contributor(s): Material type: TextTextSeries: Advanced Material SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (762 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118998588
Subject(s): Genre/Form: Additional physical formats: Print version:: Advanced Electrical and Electronics MaterialsLOC classification:
  • QC587 -- .G878 2015eb
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgement -- About the Authors -- Abbreviations -- 1 General Introduction to Electrical and Electronic Materials -- 1.1 Importance of Materials -- 1.2 Importance of Electrical and Electronic Materials -- 1.3 Classification of Electrical and Electronic Materials -- 1.3.1 Conductors -- 1.3.2 Semiconductors -- 1.3.3 Dielectrics -- 1.3.4 Superconductors -- 1.3.5 Magnetic Materials -- 1.3.6 Ferrites -- 1.3.7 Ferroelectrics -- 1.3.8 Piezoelectrics -- 1.3.9 Perovskites (Titanates, Zirconates, Hafnates) -- 1.3.10 Spinels, Garnets, and Magnetoplumbite -- 1.4 Scope of Electrical and Electronic Materials -- 1.5 Requirements of Engineering Materials -- 1.6 Operational Requirements of Electrical and Electronic Materials -- 1.6.1 High and Low Temperature (Service) Materials -- 1.6.2 High Voltage (Service) Materials -- 1.7 Classification of Solids on the Basis of Energy Gap -- 1.7.1 Energy Gap for Different Solids -- 1.7.2 Comparison among Conductors, Semiconductors and Insulators -- 1.8 Glimpse of Some Electronic Products, Their Working Principles and Choicest Materials -- 1.9 Different Types of Engineering Materials -- 1.9.1 Metals -- 1.9.2 Non-Ferrous Metals -- 1.9.3 Ceramics -- 1.9.4 Organic Polymers -- 1.9.5 Alloys -- 1.9.6 Composites -- 1.10 Different Levels of Materials Structure -- 1.10.1 Micro-Structure Levels -- 1.10.2 Dimensional Range and Examples -- 1.11 Spintronics (The Electronics of Tomorrow) and Spintronic Materials -- 1.11.1 Major Fields of Spintronic Research -- 1.11.2 Operational Mechanisms of Spintronic Devices -- 1.11.3 Working Principle of Spintronic Devices -- 1.11.4 Emerging and Futuristic Spintronic Materials -- 1.12 Ferromagnetic Semiconductor -- 1.12.1 Emerging Wide Bandgap Semiconductors -- 1.13 Left -Handed (LH) Materials -- 1.14 Solved Examples.
Review Questions -- Objective Questions -- 2 Atomic Models, Bonding in Solids, Crystal Geometry, and Miller Indices -- 2.1 Atomic Models -- 2.2 Bohr's Quantum Atomic Model -- 2.2.1 Radii of Orbits, Velocity and Frequency of Electrons -- 2.2.2 Normal, Excited and Ionized Atoms -- 2.2.3 Kinetic and Potential Energy of Electron -- 2.3 Modern Concept of Atomic Model -- 2.3.1 De Broglie Wave -- 2.3.2 Wavelength of Electron Wave -- 2.3.3 Concept of Standing Wave -- 2.4 Electron Configuration -- 2.5 Meaning of Chemical (or Atomic) Bonding -- 2.6 Classification of Chemical Bonds -- 2.7 Ionic Bond -- 2.8 Covalent Bonds -- 2.8.1 Types of Covalent Bonds -- 2.8.2 Bond Angle -- 2.8.3 Directional and Non-Directional Bonds -- 2.8.4 Mixed bonds -- 2.9 Monocrystalline and Polycrystalline Crystal Structures -- 2.9.1 Construction of a solid -- 2.10 Space Lattice -- 2.11 Basis -- 2.12 Unit Cell and Crystal -- 2.13 Bravais Crystal System -- 2.14 Primitive and Non-Primitive Unit Cells -- 2.15 Coordination Number -- 2.16 Atomic Packing Fraction -- 2.17 Calculation of Density (or Bulk Density) -- 2.18 Miller Indices -- 2.18.1 Determining the Miller Indices of a Given Plane -- 2.18.2 Drawing a Plane Whose Miller Indices are Given -- 2.18.3 Drawing a Plane which is Parallel to an Axis -- 2.18.4 Planes with Negative Indices -- 2.18.5 Family of Planes -- 2.18.6 Miller Indices: Crystallographic Notation of Atomic Crystal Directions -- 2.19 Interplaner Spacing -- 2.20 Linear Density -- 2.21 Planer Density -- 2.21.1 Planer Density in Face Centred Cube (FCC) on (100) Plane -- 2.21.2 Planer Density in FCC on (110) Plane -- 2.21.3 Planer Density in FCC on (111) Plane -- Quick Revision Summary -- Review Questions -- Numerical Questions -- Objective Questions -- 3 Solid Structures, Characterization of Materials, Crystal Imperfections, and Mechanical Properties of Materials.
3.1 Crystallography -- 3.2 Crystalline and Non-Crystalline Structures -- 3.3 Hexagonally Closed Packed Structure (HCP) -- 3.4 VOIDS -- 3.4.1 Tetrahedral Voids -- 3.4.2 Octahedral Void -- 3.5 Covalent Solids -- 3.5.1 Diamond Cubic (DC) Structure -- 3.6 Bragg's Law of X-Rays Diffraction -- 3.6.1 Bragg's Equation -- 3.6.2 Reflections from Various Sets -- 3.7 Structure Determination -- 3.8 Microscopy -- 3.8.1 Microscopic Principle -- 3.8.2 Ray Diagram and Principle of Magnification -- 3.8.3 Magnifying Power of Microscope -- 3.9 Different Types of Metallurgical Microscopes and Their Features -- 3.10 Working Principle of Electron Microscope -- 3.10.1 Formation of Magnified Image -- CRYSTAL IMPERFECTIONS -- 3.11 Ideal and Real Crystals, and Imperfections -- 3.11.1 Disadvantageous Effects of Imperfections -- 3.11.2 Advantageous Effect of Imperfection -- 3.12 Classification of Imperfections -- 3.13 Point Imperfections -- 3.13.1 Vacancy -- 3.13.2 Substitutional Impurity -- 3.13.3 Interstitial Impurity -- 3.13.4 Frenkel's Defect -- 3.13.5 Schottky's Defect -- 3.14 Effects of Point Imperfections -- 3.15 Line Imperfections -- 3.16 Features of Edge Dislocation -- 3.17 Screw Dislocation -- 3.17.1 Stress-Strain Field in Screw Dislocation -- 3.18 Characteristics of Dislocations -- 3.18.1 Burgers Vectors of Dislocations in Cubic Crystals -- 3.19 Sources of Dislocations, Their Effects and Remedies -- 3.19.1 Effects of Dislocations -- 3.19.2 Remedies to Minimize the Dislocations -- 3.20 Grain Boundary -- 3.20.1 Mechanism of grain boundary formation -- 3.21 Twin or Twinning -- 3.21.1 Annealing Twin and Deformation Twin -- 3.22 Mechanical Properties of Metals -- 3.22.1 Isotropic Anisotropic and Orthotropic Materials -- 3.22.2 Homogeneity and Heterogeneity -- 3.22.3 Strain Energy Absorbed by the Materials -- 3.22.4 Strength -- 3.22.5 Stiffness.
3.22.6 Resilience, Proof Resilience and Toughness -- 3.22.7 Elasticity and Plasticity -- 3.22.8 Ductility and Brittleness -- 3.22.9 Malleability -- 3.22.10 Fatigue -- 3.22.11 Creep -- 3.22.12 Need of Different Properties for Different Applications -- 3.22.13 Hardness -- 3.22.14 Impact -- 3.22.15 Factors Affecting Mechanical Properties -- Review Questions -- Numerical Problems -- 4 Conductive Materials: Electron Theories, Properties and Behaviour -- 4.1 Electrons and Their Role in Conductivity -- 4.1.1 Valence and Free Electrons -- 4.2 Electron Theories of Solids -- 4.3 Free Electron Theory -- 4.3.1 Kinetic Energy in Terms of Wave Number -- 4.3.2 Kinetic Energy in Terms of Length of the Solid -- 4.3.3 Energy Equation for 3-Dimensional Solid -- 4.3.4 Mechanism of Conduction by Free Electrons -- 4.3.5 Drift Velocity and Collision Time -- 4.3.6 Mean Free Path (or Mean Free Length) -- 4.3.7 Effect of Temperature on Mean Free Path -- 4.4 Energy Band Theory -- 4.4.1 Critical Conditions -- 4.4.2 Magnitude of Energy Gap -- 4.5 Brillouin Zone Theory -- 4.5.1 Meaning of Different Brillouin Zones -- 4.5.2 First and Second Brillouin Zones -- 4.5.3 Brillouin Zones for Simple Cubic Lattice -- 4.5.4 Brillouin Zones for BCC, FCC and HCP Lattices -- 4.6 Conductors -- 4.6.1 Characteristics of a Good Conductor -- 4.7 Factors Affecting Conductivity (and Resistivity) of Metals -- 4.7.1 Temperature Effect on Conductivity -- 4.7.2 Nordheim Equation for Impurity and Alloying Effects on Resistivity -- 4.7.3 Effect of Plastic Deformation and Cold Working -- 4.7.4 Matthilseen Rule of Total Resistivity -- 4.8 Thermal Conductivity -- 4.8.1 Salient Features of Different Materials Regarding Thermal Conductivity -- 4.9 Heating Effect of Current -- 4.9.1 Joule's Law of Electrical Heating -- 4.9.2 Applications of Heating Effect -- 4.10 Thermoelectric Effect (or Thermoelectricity).
4.11 Seebeck Effect -- 4.11.1 Seebeck Series -- 4.11.2 Seebeck e.m.f. -- 4.11.3 Applications of Thermoelectric Effect -- 4.12 Peltier Effect -- 4.12.1 Peltier Coefficient -- 4.13 Thomson Effect -- 4.13.1 Types of Materials on the Basis of Thomson Effect -- 4.13.2 Materials for Thermocouples and Thermopiles -- 4.14 Wiedemann-Franz Law and Lorentz Relation -- 4.14.1 Determining the Thermal Conductivity -- 4.14.2 Consideration of Electron Collision -- 4.14.3 Consideration of Fermi Energy -- 4.14.4 Lorentz Number -- 4.15 Solved Examples -- Quick Revision Summary -- Review Questions -- Numerical Problems -- Objective Questions -- True and False Type Questions -- Fill in the Blank Type Questions -- Multiple Choice Type Questions -- 5 Conductive Materials: Types and Applications -- 5.1 Mechanically Processed Forms of Electrical Materials -- 5.1.1 Cladded Metals -- 5.1.2 Bimetals -- 5.1.3 Sintered Materials -- 5.1.4 Hot Rolled and Cold Rolled Metals -- 5.1.5 Hard Drawn and Soft Drawn Metals -- 5.1.6 Annealed Metals -- 5.2 Types of Conducting Materials -- 5.3 Low Resistivity Materials -- 5.3.1 Characteristics of Low Resistivity Materials -- 5.3.2 Copper and its Types -- 5.3.3 Types of Aluminium and their Applications -- 5.3.4 Comparison among Different Low Resistivity Conducting Materials -- 5.3.5 Copper Alloys (Brass and Bronze) -- 5.4 High Resistivity Materials -- 5.4.1 Characteristics of High Resistivity Materials -- 5.4.2 Nickel -- 5.4.3 Tantalum -- 5.4.4 High Resistivity Alloys -- 5.4.5 Salient Applications of High Resistivity Materials -- 5.5 Contact Materials -- 5.5.1 Requirements of a Good Contact Material -- 5.5.2 Types of Contact Materials -- 5.5.3 Common Contact Metals -- 5.5.4 Salient Applications of Contact Materials -- 5.6 Fusible (or Fuse) Materials -- 5.6.1 Requirements of Fuse Materials -- 5.6.2 Fusible Metals and Alloys.
5.7 Filament Materials.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgement -- About the Authors -- Abbreviations -- 1 General Introduction to Electrical and Electronic Materials -- 1.1 Importance of Materials -- 1.2 Importance of Electrical and Electronic Materials -- 1.3 Classification of Electrical and Electronic Materials -- 1.3.1 Conductors -- 1.3.2 Semiconductors -- 1.3.3 Dielectrics -- 1.3.4 Superconductors -- 1.3.5 Magnetic Materials -- 1.3.6 Ferrites -- 1.3.7 Ferroelectrics -- 1.3.8 Piezoelectrics -- 1.3.9 Perovskites (Titanates, Zirconates, Hafnates) -- 1.3.10 Spinels, Garnets, and Magnetoplumbite -- 1.4 Scope of Electrical and Electronic Materials -- 1.5 Requirements of Engineering Materials -- 1.6 Operational Requirements of Electrical and Electronic Materials -- 1.6.1 High and Low Temperature (Service) Materials -- 1.6.2 High Voltage (Service) Materials -- 1.7 Classification of Solids on the Basis of Energy Gap -- 1.7.1 Energy Gap for Different Solids -- 1.7.2 Comparison among Conductors, Semiconductors and Insulators -- 1.8 Glimpse of Some Electronic Products, Their Working Principles and Choicest Materials -- 1.9 Different Types of Engineering Materials -- 1.9.1 Metals -- 1.9.2 Non-Ferrous Metals -- 1.9.3 Ceramics -- 1.9.4 Organic Polymers -- 1.9.5 Alloys -- 1.9.6 Composites -- 1.10 Different Levels of Materials Structure -- 1.10.1 Micro-Structure Levels -- 1.10.2 Dimensional Range and Examples -- 1.11 Spintronics (The Electronics of Tomorrow) and Spintronic Materials -- 1.11.1 Major Fields of Spintronic Research -- 1.11.2 Operational Mechanisms of Spintronic Devices -- 1.11.3 Working Principle of Spintronic Devices -- 1.11.4 Emerging and Futuristic Spintronic Materials -- 1.12 Ferromagnetic Semiconductor -- 1.12.1 Emerging Wide Bandgap Semiconductors -- 1.13 Left -Handed (LH) Materials -- 1.14 Solved Examples.

Review Questions -- Objective Questions -- 2 Atomic Models, Bonding in Solids, Crystal Geometry, and Miller Indices -- 2.1 Atomic Models -- 2.2 Bohr's Quantum Atomic Model -- 2.2.1 Radii of Orbits, Velocity and Frequency of Electrons -- 2.2.2 Normal, Excited and Ionized Atoms -- 2.2.3 Kinetic and Potential Energy of Electron -- 2.3 Modern Concept of Atomic Model -- 2.3.1 De Broglie Wave -- 2.3.2 Wavelength of Electron Wave -- 2.3.3 Concept of Standing Wave -- 2.4 Electron Configuration -- 2.5 Meaning of Chemical (or Atomic) Bonding -- 2.6 Classification of Chemical Bonds -- 2.7 Ionic Bond -- 2.8 Covalent Bonds -- 2.8.1 Types of Covalent Bonds -- 2.8.2 Bond Angle -- 2.8.3 Directional and Non-Directional Bonds -- 2.8.4 Mixed bonds -- 2.9 Monocrystalline and Polycrystalline Crystal Structures -- 2.9.1 Construction of a solid -- 2.10 Space Lattice -- 2.11 Basis -- 2.12 Unit Cell and Crystal -- 2.13 Bravais Crystal System -- 2.14 Primitive and Non-Primitive Unit Cells -- 2.15 Coordination Number -- 2.16 Atomic Packing Fraction -- 2.17 Calculation of Density (or Bulk Density) -- 2.18 Miller Indices -- 2.18.1 Determining the Miller Indices of a Given Plane -- 2.18.2 Drawing a Plane Whose Miller Indices are Given -- 2.18.3 Drawing a Plane which is Parallel to an Axis -- 2.18.4 Planes with Negative Indices -- 2.18.5 Family of Planes -- 2.18.6 Miller Indices: Crystallographic Notation of Atomic Crystal Directions -- 2.19 Interplaner Spacing -- 2.20 Linear Density -- 2.21 Planer Density -- 2.21.1 Planer Density in Face Centred Cube (FCC) on (100) Plane -- 2.21.2 Planer Density in FCC on (110) Plane -- 2.21.3 Planer Density in FCC on (111) Plane -- Quick Revision Summary -- Review Questions -- Numerical Questions -- Objective Questions -- 3 Solid Structures, Characterization of Materials, Crystal Imperfections, and Mechanical Properties of Materials.

3.1 Crystallography -- 3.2 Crystalline and Non-Crystalline Structures -- 3.3 Hexagonally Closed Packed Structure (HCP) -- 3.4 VOIDS -- 3.4.1 Tetrahedral Voids -- 3.4.2 Octahedral Void -- 3.5 Covalent Solids -- 3.5.1 Diamond Cubic (DC) Structure -- 3.6 Bragg's Law of X-Rays Diffraction -- 3.6.1 Bragg's Equation -- 3.6.2 Reflections from Various Sets -- 3.7 Structure Determination -- 3.8 Microscopy -- 3.8.1 Microscopic Principle -- 3.8.2 Ray Diagram and Principle of Magnification -- 3.8.3 Magnifying Power of Microscope -- 3.9 Different Types of Metallurgical Microscopes and Their Features -- 3.10 Working Principle of Electron Microscope -- 3.10.1 Formation of Magnified Image -- CRYSTAL IMPERFECTIONS -- 3.11 Ideal and Real Crystals, and Imperfections -- 3.11.1 Disadvantageous Effects of Imperfections -- 3.11.2 Advantageous Effect of Imperfection -- 3.12 Classification of Imperfections -- 3.13 Point Imperfections -- 3.13.1 Vacancy -- 3.13.2 Substitutional Impurity -- 3.13.3 Interstitial Impurity -- 3.13.4 Frenkel's Defect -- 3.13.5 Schottky's Defect -- 3.14 Effects of Point Imperfections -- 3.15 Line Imperfections -- 3.16 Features of Edge Dislocation -- 3.17 Screw Dislocation -- 3.17.1 Stress-Strain Field in Screw Dislocation -- 3.18 Characteristics of Dislocations -- 3.18.1 Burgers Vectors of Dislocations in Cubic Crystals -- 3.19 Sources of Dislocations, Their Effects and Remedies -- 3.19.1 Effects of Dislocations -- 3.19.2 Remedies to Minimize the Dislocations -- 3.20 Grain Boundary -- 3.20.1 Mechanism of grain boundary formation -- 3.21 Twin or Twinning -- 3.21.1 Annealing Twin and Deformation Twin -- 3.22 Mechanical Properties of Metals -- 3.22.1 Isotropic Anisotropic and Orthotropic Materials -- 3.22.2 Homogeneity and Heterogeneity -- 3.22.3 Strain Energy Absorbed by the Materials -- 3.22.4 Strength -- 3.22.5 Stiffness.

3.22.6 Resilience, Proof Resilience and Toughness -- 3.22.7 Elasticity and Plasticity -- 3.22.8 Ductility and Brittleness -- 3.22.9 Malleability -- 3.22.10 Fatigue -- 3.22.11 Creep -- 3.22.12 Need of Different Properties for Different Applications -- 3.22.13 Hardness -- 3.22.14 Impact -- 3.22.15 Factors Affecting Mechanical Properties -- Review Questions -- Numerical Problems -- 4 Conductive Materials: Electron Theories, Properties and Behaviour -- 4.1 Electrons and Their Role in Conductivity -- 4.1.1 Valence and Free Electrons -- 4.2 Electron Theories of Solids -- 4.3 Free Electron Theory -- 4.3.1 Kinetic Energy in Terms of Wave Number -- 4.3.2 Kinetic Energy in Terms of Length of the Solid -- 4.3.3 Energy Equation for 3-Dimensional Solid -- 4.3.4 Mechanism of Conduction by Free Electrons -- 4.3.5 Drift Velocity and Collision Time -- 4.3.6 Mean Free Path (or Mean Free Length) -- 4.3.7 Effect of Temperature on Mean Free Path -- 4.4 Energy Band Theory -- 4.4.1 Critical Conditions -- 4.4.2 Magnitude of Energy Gap -- 4.5 Brillouin Zone Theory -- 4.5.1 Meaning of Different Brillouin Zones -- 4.5.2 First and Second Brillouin Zones -- 4.5.3 Brillouin Zones for Simple Cubic Lattice -- 4.5.4 Brillouin Zones for BCC, FCC and HCP Lattices -- 4.6 Conductors -- 4.6.1 Characteristics of a Good Conductor -- 4.7 Factors Affecting Conductivity (and Resistivity) of Metals -- 4.7.1 Temperature Effect on Conductivity -- 4.7.2 Nordheim Equation for Impurity and Alloying Effects on Resistivity -- 4.7.3 Effect of Plastic Deformation and Cold Working -- 4.7.4 Matthilseen Rule of Total Resistivity -- 4.8 Thermal Conductivity -- 4.8.1 Salient Features of Different Materials Regarding Thermal Conductivity -- 4.9 Heating Effect of Current -- 4.9.1 Joule's Law of Electrical Heating -- 4.9.2 Applications of Heating Effect -- 4.10 Thermoelectric Effect (or Thermoelectricity).

4.11 Seebeck Effect -- 4.11.1 Seebeck Series -- 4.11.2 Seebeck e.m.f. -- 4.11.3 Applications of Thermoelectric Effect -- 4.12 Peltier Effect -- 4.12.1 Peltier Coefficient -- 4.13 Thomson Effect -- 4.13.1 Types of Materials on the Basis of Thomson Effect -- 4.13.2 Materials for Thermocouples and Thermopiles -- 4.14 Wiedemann-Franz Law and Lorentz Relation -- 4.14.1 Determining the Thermal Conductivity -- 4.14.2 Consideration of Electron Collision -- 4.14.3 Consideration of Fermi Energy -- 4.14.4 Lorentz Number -- 4.15 Solved Examples -- Quick Revision Summary -- Review Questions -- Numerical Problems -- Objective Questions -- True and False Type Questions -- Fill in the Blank Type Questions -- Multiple Choice Type Questions -- 5 Conductive Materials: Types and Applications -- 5.1 Mechanically Processed Forms of Electrical Materials -- 5.1.1 Cladded Metals -- 5.1.2 Bimetals -- 5.1.3 Sintered Materials -- 5.1.4 Hot Rolled and Cold Rolled Metals -- 5.1.5 Hard Drawn and Soft Drawn Metals -- 5.1.6 Annealed Metals -- 5.2 Types of Conducting Materials -- 5.3 Low Resistivity Materials -- 5.3.1 Characteristics of Low Resistivity Materials -- 5.3.2 Copper and its Types -- 5.3.3 Types of Aluminium and their Applications -- 5.3.4 Comparison among Different Low Resistivity Conducting Materials -- 5.3.5 Copper Alloys (Brass and Bronze) -- 5.4 High Resistivity Materials -- 5.4.1 Characteristics of High Resistivity Materials -- 5.4.2 Nickel -- 5.4.3 Tantalum -- 5.4.4 High Resistivity Alloys -- 5.4.5 Salient Applications of High Resistivity Materials -- 5.5 Contact Materials -- 5.5.1 Requirements of a Good Contact Material -- 5.5.2 Types of Contact Materials -- 5.5.3 Common Contact Metals -- 5.5.4 Salient Applications of Contact Materials -- 5.6 Fusible (or Fuse) Materials -- 5.6.1 Requirements of Fuse Materials -- 5.6.2 Fusible Metals and Alloys.

5.7 Filament Materials.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.