ORPP logo
Image from Google Jackets

Bayesian Inference in the Social Sciences.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (311 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118771129
Subject(s): Genre/Form: Additional physical formats: Print version:: Bayesian Inference in the Social SciencesDDC classification:
  • 519.5/42
LOC classification:
  • HA29 -- .B38345 2014eb
Online resources:
Contents:
Intro -- Half Title page -- Title page -- Copyright page -- Preface -- Chapter 1: Bayesian Analysis of Dynamic Network Regression with Joint Edge/Vertex Dynamics -- 1.1 Introduction -- 1.2 Statistical Models for Social Network Data -- 1.3 Dynamic Network Logistic Regression with Vertex Dynamics -- 1.4 Empirical Examples and Simulation Analysis -- 1.5 Discussion -- 1.6 Conclusion -- Bibliography -- Chapter 2: Ethnic Minority Rule and Civil War: A Bayesian Dynamic Multilevel Analysis -- 2.1 Introduction: Ethnic Minority Rule and Civil War -- 2.2 EMR: Grievance and Opportunities of Rebellion -- 2.3 Bayesian GLMM-AR(p) Model -- 2.4 Variables, Model, and Data -- 2.5 Empirical Results and Interpretation -- 2.6 Civil War: Prediction -- 2.7 Robustness Checking: Alternative Measures of EMR -- 2.8 Conclusion -- Bibliography -- Chapter 3: Bayesian Analysis of Treatment Effect Models -- 3.1 Introduction -- 3.2 Linear Treatment Response Models Under Normality -- 3.3 Nonlinear Treatment Response Models -- 3.4 Other Issues and Extensions: Non-Normality, Model Selection, and Instrument Imperfection -- 3.5 Illustrative Application -- 3.6 Conclusion -- Bibliography -- Chapter 4: Bayesian Analysis of Sample Selection Models -- 4.1 Introduction -- 4.2 Univariate Selection Models -- 4.3 Multivariate Selection Models -- 4.4 Semiparametric Models -- 4.5 Conclusion -- Bibliography -- Chapter 5: Modern Bayesian Factor Analysis -- 5.1 Introduction -- 5.2 Normal Linear Factor Analysis -- 5.3 Factor Stochastic Volatility -- 5.4 Spatial Factor Analysis -- 5.5 Additional Developments -- 5.6 Modern non-Bayesian factor analysis -- 5.7 Final Remarks -- Bibliography -- Chapter 6: Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence -- 6.1 Introduction -- 6.2 Stochastic Volatility Model -- 6.3 Moving Average Stochastic Volatility Model.
6.4 Stochastic Volatility Models with Heavy-Tailed Error Distributions -- Bibliography -- Chapter 7: From the Great Depression to the Great Recession: A Model-Based Ranking of U.S. Recessions -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Results -- 7.4 Conclusions -- Appendix: Data -- Bibliography -- Chapter 8: What Difference Fat Tails Make: A Bayesian MCMC Estimation of Empirical Asset Pricing Models -- 8.1 Introduction -- 8.2 Methodology -- 8.3 Data -- 8.4 Empirical Results -- 8.5 Concluding Remarks -- Bibliography -- Chapter 9: Stochastic Search for Price Insensitive Consumers -- 9.1 Introduction -- 9.2 Random Utility Models in Marketing Applications -- 9.3 The Censored Mixing Distribution in Detail -- 9.4 Reference Price Models with Price Thresholds -- 9.5 Conclusion -- Bibliography -- Chapter 10: Hierarchical Modeling of Choice Concentration of U.S. Households -- 10.1 Introduction -- 10.2 Data Description -- 10.3 Measures of Choice Concentration -- 10.4 Methodology -- 10.5 Results -- 10.6 Interpreting θ -- 10.7 Decomposing the Effects of Time, Number of Decisions and Concentration Preference -- 10.8 Conclusion -- Bibliography -- Chapter 11: Approximate Bayesian Inference in Models Defined Through Estimating Equations -- 11.1 Introduction -- 11.2 Examples -- 11.3 Frequentist Estimation -- 11.4 Bayesian Estimation -- 11.5 Simulating from the Posteriors -- 11.6 Asymptotic Theory -- 11.7 Bayesian Validity -- 11.8 Application -- 11.9 Conclusions -- Bibliography -- Chapter 12: Reacting to Surprising Seemingly Inappropriate Results -- 12.1 Introduction -- 12.2 Statistical Framework -- 12.3 Empirical Illustration -- 12.4 Discussion -- Bibliography -- Chapter 13: Identification and MCMC Estimation of Bivariate Probit Models with Partial Observability -- 13.1 Introduction -- 13.2 Bivariate Probit Model.
13.3 Identification in a Partially Observable Model -- 13.4 Monte Carlo Simulations -- 13.5 Bayesian Methodology -- 13.6 Application -- 13.7 Conclusion -- Appendix -- Bibliography -- Chapter 14: School Choice Effects in Tokyo Metropolitan Area: A Bayesian Spatial Quantile Regression Approach -- 14.1 Introduction -- 14.2 The Model -- 14.3 Posterior Analysis -- 14.4 Empirical Analysis -- 14.5 Conclusions -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Half Title page -- Title page -- Copyright page -- Preface -- Chapter 1: Bayesian Analysis of Dynamic Network Regression with Joint Edge/Vertex Dynamics -- 1.1 Introduction -- 1.2 Statistical Models for Social Network Data -- 1.3 Dynamic Network Logistic Regression with Vertex Dynamics -- 1.4 Empirical Examples and Simulation Analysis -- 1.5 Discussion -- 1.6 Conclusion -- Bibliography -- Chapter 2: Ethnic Minority Rule and Civil War: A Bayesian Dynamic Multilevel Analysis -- 2.1 Introduction: Ethnic Minority Rule and Civil War -- 2.2 EMR: Grievance and Opportunities of Rebellion -- 2.3 Bayesian GLMM-AR(p) Model -- 2.4 Variables, Model, and Data -- 2.5 Empirical Results and Interpretation -- 2.6 Civil War: Prediction -- 2.7 Robustness Checking: Alternative Measures of EMR -- 2.8 Conclusion -- Bibliography -- Chapter 3: Bayesian Analysis of Treatment Effect Models -- 3.1 Introduction -- 3.2 Linear Treatment Response Models Under Normality -- 3.3 Nonlinear Treatment Response Models -- 3.4 Other Issues and Extensions: Non-Normality, Model Selection, and Instrument Imperfection -- 3.5 Illustrative Application -- 3.6 Conclusion -- Bibliography -- Chapter 4: Bayesian Analysis of Sample Selection Models -- 4.1 Introduction -- 4.2 Univariate Selection Models -- 4.3 Multivariate Selection Models -- 4.4 Semiparametric Models -- 4.5 Conclusion -- Bibliography -- Chapter 5: Modern Bayesian Factor Analysis -- 5.1 Introduction -- 5.2 Normal Linear Factor Analysis -- 5.3 Factor Stochastic Volatility -- 5.4 Spatial Factor Analysis -- 5.5 Additional Developments -- 5.6 Modern non-Bayesian factor analysis -- 5.7 Final Remarks -- Bibliography -- Chapter 6: Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence -- 6.1 Introduction -- 6.2 Stochastic Volatility Model -- 6.3 Moving Average Stochastic Volatility Model.

6.4 Stochastic Volatility Models with Heavy-Tailed Error Distributions -- Bibliography -- Chapter 7: From the Great Depression to the Great Recession: A Model-Based Ranking of U.S. Recessions -- 7.1 Introduction -- 7.2 Methodology -- 7.3 Results -- 7.4 Conclusions -- Appendix: Data -- Bibliography -- Chapter 8: What Difference Fat Tails Make: A Bayesian MCMC Estimation of Empirical Asset Pricing Models -- 8.1 Introduction -- 8.2 Methodology -- 8.3 Data -- 8.4 Empirical Results -- 8.5 Concluding Remarks -- Bibliography -- Chapter 9: Stochastic Search for Price Insensitive Consumers -- 9.1 Introduction -- 9.2 Random Utility Models in Marketing Applications -- 9.3 The Censored Mixing Distribution in Detail -- 9.4 Reference Price Models with Price Thresholds -- 9.5 Conclusion -- Bibliography -- Chapter 10: Hierarchical Modeling of Choice Concentration of U.S. Households -- 10.1 Introduction -- 10.2 Data Description -- 10.3 Measures of Choice Concentration -- 10.4 Methodology -- 10.5 Results -- 10.6 Interpreting θ -- 10.7 Decomposing the Effects of Time, Number of Decisions and Concentration Preference -- 10.8 Conclusion -- Bibliography -- Chapter 11: Approximate Bayesian Inference in Models Defined Through Estimating Equations -- 11.1 Introduction -- 11.2 Examples -- 11.3 Frequentist Estimation -- 11.4 Bayesian Estimation -- 11.5 Simulating from the Posteriors -- 11.6 Asymptotic Theory -- 11.7 Bayesian Validity -- 11.8 Application -- 11.9 Conclusions -- Bibliography -- Chapter 12: Reacting to Surprising Seemingly Inappropriate Results -- 12.1 Introduction -- 12.2 Statistical Framework -- 12.3 Empirical Illustration -- 12.4 Discussion -- Bibliography -- Chapter 13: Identification and MCMC Estimation of Bivariate Probit Models with Partial Observability -- 13.1 Introduction -- 13.2 Bivariate Probit Model.

13.3 Identification in a Partially Observable Model -- 13.4 Monte Carlo Simulations -- 13.5 Bayesian Methodology -- 13.6 Application -- 13.7 Conclusion -- Appendix -- Bibliography -- Chapter 14: School Choice Effects in Tokyo Metropolitan Area: A Bayesian Spatial Quantile Regression Approach -- 14.1 Introduction -- 14.2 The Model -- 14.3 Posterior Analysis -- 14.4 Empirical Analysis -- 14.5 Conclusions -- Bibliography -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.