Handbook of Environmental Engineering.
Material type:
- text
- computer
- online resource
- 9781119304401
- TA170 .H359 2018
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Environmental Systems Analysis -- 1.1 Introduction -- 1.2 Environmental Systems Analysis Methods -- 1.2.1 Energy and Exergy Analysis -- 1.2.2 Material Flow Analysis -- 1.2.3 Substance Flow Analysis -- 1.2.4 Environmental Risk Assessment -- 1.2.5 Environmental Management Systems -- 1.2.6 Environmental Input-Output Analysis -- 1.2.7 Life Cycle Assessment -- 1.2.8 Life Cycle Costing -- 1.2.9 Social Life Cycle Assessment -- 1.2.10 Cost-Benefit Analysis -- 1.3 Summary -- References -- Chapter 2 Measurements in Environmental Engineering -- Summary -- 2.1 Introduction -- 2.1.1 Data Quality Objectives -- 2.1.2 Monitoring Plan Example -- 2.1.3 Selection of a Monitoring Site -- 2.2 Environmental Sampling Approaches -- 2.2.1 Sampling Approaches -- 2.3 Laboratory Analysis -- 2.3.1 Extraction -- 2.3.2 Separation Science -- 2.4 Sources of Uncertainty -- 2.5 Measurements and Models -- 2.6 Contaminants of Concern -- 2.7 Environmental Indicators -- 2.7.1 Oxygen -- 2.7.2 Indices -- 2.8 Emerging Trends in Measurement -- 2.8.1 Sensors -- 2.8.2 Big Data and the New Decision-Making Paradigm -- 2.8.3 Biological Measurements -- 2.9 Measurement Ethics -- Note -- References -- Chapter 3 Environmental Law for Engineers -- 3.1 Introduction and General Principles -- 3.1.1 Sources of Law -- 3.1.2 Environmental Statutes -- 3.1.3 US Federal System -- 3.1.4 Administrative Law and Rulemaking Procedure -- 3.1.5 Judicial Review -- 3.2 Common Law -- 3.3 The National Environmental Policy Act -- 3.3.1 Federal Agency Planning under NEPA -- 3.3.2 NEPA and Climate Change -- 3.4 Clean Air Act -- 3.4.1 National Ambient Air Quality Standards and State Implementation Plans -- 3.4.2 New Source Review -- 3.4.3 National Emissions Standards for Stationary Sources -- 3.4.4 Motor Vehicles and Fuels.
3.4.5 Regulation of Greenhouse Gases under the Clean Air Act -- 3.5 Clean Water Act -- 3.5.1 National Pollutant Discharge Elimination System Permits -- 3.5.2 Technology-Based Effluent Limitations -- 3.5.3 Water Quality Standards -- 3.6 Resource Conservation and Recovery Act -- 3.6.1 Identifying and Classifying Wastes -- 3.6.2 Nonhazardous Waste Management -- 3.6.3 Hazardous Waste Management -- 3.6.4 Land Disposal Restrictions -- 3.6.5 Waste Incineration -- 3.7 CERCLA -- 3.7.1 CERCLA Liability -- 3.7.2 National Priorities List and Cleanup Process -- 3.7.3 Cleanup Standards -- 3.8 Enforcement and Liability -- 3.8.1 Citizen Suits -- 3.8.2 Penalties for Violating Environmental Laws -- 3.8.3 Monitoring Compliance and Discovering Violations -- Notes -- Chapter 4 Climate Modeling -- 4.1 Introduction -- 4.2 Historical Development -- 4.2.1 From Weather Forecasting to Climate Modeling -- 4.2.2 Beyond an Atmospheric Model -- 4.3 Numerical Architecture of the Dynamical Core -- 4.3.1 Discretization and Numerical Methods -- 4.3.2 Boundary Conditions and Vertical Coordinate -- 4.4 Physical and Subgrid-Scale Parameterization -- 4.4.1 Radiative Processes -- 4.4.2 Moist Processes and Cloud Physics -- 4.4.3 Boundary Layer Turbulence -- 4.4.4 Land Surface Processes -- 4.4.5 Gravity Wave Drag -- 4.4.6 Biogeochemical Processes -- 4.5 Coupling among the Major Components of the Climate System -- 4.6 The Practice of Climate Prediction and Projection -- 4.6.1 Validation of Climate Models -- 4.6.2 Climate Prediction on Interannual‐to‐Decadal Time Scales -- 4.6.3 Climate Projection on Multidecadal to Centennial Time Scales -- 4.6.4 Climate Downscaling -- 4.7 Statistical Model -- 4.8 Outlook -- References -- Chapter 5 Climate Change Impact Analysis for the Environmental Engineer -- 5.1 Introduction -- 5.2 Earth System's Critical Zone -- 5.2.1 What Is the Critical Zone?.
5.2.2 Tying the Critical Zone Together -- 5.2.3 Addressing the Fundamental Questions about Critical Zone Processes -- 5.2.4 Critical Zone Observatories -- 5.2.5 Summary -- 5.3 Perception, Risk, and Hazard -- 5.3.1 Introduction -- 5.3.2 Hazards -- 5.3.2.1 Geophysical Hazards -- 5.3.2.2 Anthropogenic Hazards -- 5.3.2.3 Climate Hazards -- 5.3.2.4 An Interdisciplinary Thinking Approach about Hazards in the Critical Zone -- 5.3.3 Risk Control -- 5.3.3.1 Artificial Intelligence -- 5.3.3.2 Mitigation -- 5.3.4 Summary -- 5.4 Climatology Methods -- 5.4.1 Introduction -- 5.4.2 Analysis in Time and Space -- 5.4.2.1 Time -- 5.4.2.2 Space -- 5.4.2.3 Integration of Time and Space -- 5.4.3 Climate Data -- 5.4.3.1 Observational Data -- 5.4.3.2 Modeling Data -- 5.4.3.3 Data Sources and Collaborations -- 5.4.3.4 Missing Data -- 5.4.4 Statistics in Climatology -- 5.4.4.1 Linear Regression Analysis and Significance Test -- 5.4.4.2 Geostatistics -- 5.4.4.3 PCA (EOF) and Wavelet Analysis -- 5.4.5 Summary -- 5.5 Geomorphometry: The Best Approach for Impact Analysis -- 5.5.1 Introduction -- 5.5.2 Geomorphometry Research and Applications -- 5.5.3 Software Package Evaluation -- 5.5.4 Case Study of Analysis of Climate Change Impact -- 5.5.4.1 Characterization of Rivers Basins in the San Juan Mountains, Colorado -- 5.5.4.2 Modeling Glacier Change -- 5.5.4.3 Automated Land Cover Stratification of Alpine Environments -- 5.5.5 Summary -- References -- Chapter 6 Adaptation Design to Sea Level Rise -- 6.1 Introduction: Sea Level Rise -- 6.1.1 Background -- 6.1.2 Causes of Sea Level Rise -- 6.1.3 Impacts of Sea Level Rise -- 6.2 Existing Structures and Adaptation Design to Sea Level Rise -- 6.2.1 Conventional Wisdom: Protect, Elevate, and Retreat -- 6.2.1.1 Protection -- 6.2.1.2 Elevating Structures -- 6.2.1.3 Retreat -- 6.2.2 Accommodation -- 6.2.2.1 Letting the Water in.
6.2.2.2 Rediscovered and New Technologies of Potential Utility -- 6.2.2.3 New Construction within Flood Zones -- 6.2.2.4 Intersection between Adaptation Strategies and Community Resilience -- 6.2.2.5 Intersection between Adaptation Strategies and Historic Preservation -- 6.2.2.6 Intersection between Adaptation Strategies and Policy Issues -- 6.3 Case Studies Reflecting Adaptation Design Solutions -- 6.3.1 Case Study 1: Chesterfield Heights -- 6.3.1.1 Community Engagement -- 6.3.1.2 Observations of Conditions -- 6.3.1.3 Cross-Disciplinary Inquiry -- 6.3.1.4 Exploration of Full Block Raising/Storage -- 6.3.1.5 Guiding Principles -- 6.3.1.6 Living Shoreline -- 6.3.1.7 Use of Existing Wetland Area for Storage -- 6.3.1.8 Water Storage: Streetscape -- 6.3.1.9 Water Storage Parcel by Parcel -- 6.3.1.10 Tidal Check Valves and EPA SWMM Modeling -- 6.3.1.11 Epilogue: Dutch Dialogues -- 6.3.1.12 Epilogue: NDRC -- 6.3.2 Case Study 2: The Hague -- 6.3.2.1 Observation of Conditions -- 6.3.2.2 Community Engagement -- 6.3.2.3 Guiding Principles/Cross-Disciplinary Inquiry/Collaborators -- 6.3.2.4 Barriers -- 6.3.2.5 Sponges -- 6.3.3 Summary -- Notes -- References -- Chapter 7 Soil Physical Properties and Processes -- 7.1 Introduction -- 7.2 Basic Properties of Soils -- 7.2.1 Fundamental Mass-Volume Relationships -- 7.2.2 The Size Distribution of Soil Particles and Soil Classification -- 7.2.2.1 Methods for Determination of the Soil Particle Size Distribution -- 7.2.2.2 Application of PSD Information for Textural Classification of Soils -- 7.2.3 The Specific Surface of Soils -- 7.2.3.1 Adsorption of Nonpolar Gases for SSA Estimation -- 7.2.3.2 Adsorption of Polar Liquids for SSA Estimation -- 7.2.4 Soil Water -- 7.2.4.1 Soil Water Content -- 7.2.4.2 The Energy State of Soil Water -- 7.2.4.3 The Soil Water Characteristic -- 7.3 Water Flow in Soils.
7.3.1 Basic Models for Water Flow in Soil -- 7.3.1.1 Darcy's Law -- 7.3.1.2 Buckingham-Darcy Law -- 7.3.1.3 Richards' Equation -- 7.3.2 Mathematical Modeling of Soil Water Flow -- 7.3.2.1 Analytical Solution of Buckingham-Darcy Equation -- 7.3.2.2 Analytical Solution of Richards' Equation -- 7.3.2.3 Numerical Solution of Richards' Equation -- 7.3.2.4 Scaled Forms of Richards' Equation -- 7.3.2.5 Preferential Flow -- 7.3.3 Characterization of Soil Hydraulic Properties -- 7.3.3.1 Laboratory Methods -- 7.3.3.2 Field Methods -- 7.4 Solute Transport -- 7.4.1 Solute Transport Processes -- 7.4.1.1 Advection -- 7.4.1.2 Diffusion -- 7.4.1.3 Dispersion -- 7.4.1.4 Adsorption -- 7.4.1.5 Exclusion -- 7.4.2 Mathematical Modeling of Solute Transport -- 7.4.2.1 Transport in Unsaturated Soils -- 7.4.2.2 Advection-Dispersion Equation and Its Analytical Solutions -- 7.4.3 Characterizing Soil Transport Parameters -- 7.4.3.1 Breakthrough Curve -- 7.4.3.2 Measurement of Solute Concentration -- 7.5 Soil Temperature, Thermal Properties, and Heat Flow -- 7.5.1 Soil Temperature -- 7.5.1.1 Measurement of Soil Temperature -- 7.5.2 Heat Transport -- 7.5.2.1 Modes of Energy Transfer in Soils -- 7.5.2.2 The Heat Conservation Equation -- 7.5.2.3 Analytical Solutions to Heat Transport -- 7.5.3 Soil Thermal Properties -- 7.5.3.1 Soil Heat Capacity -- 7.5.3.2 Soil Thermal Conductivity -- 7.5.3.3 Soil Thermal Diffusivity -- 7.5.4 Heat Pulse Measurements -- 7.5.4.1 Soil Thermal Property Fitting -- 7.5.4.2 Soil Water Flux Density and Direction -- 7.5.4.3 Soil Heat Balance and Subsurface Evaporation -- 7.5.5 Temperature Effects on Biological Activity -- 7.6 Summary -- Acknowledgments -- Abbreviations -- Physical Constants and Variables -- References -- Chapter 8 In Situ Soil and Sediment Remediation: Electrokinetic and Electrochemical Methods -- 8.1 Introduction and Background.
8.2 Overview and Theory of Direct Electric Current in Soil and Sediment Remediation.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.