Wearable Sensors : Fundamentals, Implementation and Applications.
Material type:
- text
- computer
- online resource
- 9780124186668
- 004.167
- TK7885.A1 -- .W43 2014eb
Front Cover -- Wearable Sensors -- Copyright Page -- Contents -- List of Contributors -- Introduction -- 1.1 Wearables: Fundamentals, Advancements, and a Roadmap for the Future -- 1 World of Wearables (WOW) -- 1.1 The Role of Wearables -- 1.2 Data-Information-Knowledge-Value Paradigm -- 1.2.1 The Emerging Concept of Big Data -- 1.2.2 Medical Loss Ratio and Wearables -- 1.3 The Ecosystem Enabling Digital Life -- 1.3.1 Smart Mobile Communication Devices -- 1.3.2 Social Media Tools -- 2 Attributes of Wearables -- 2.1 Taxonomy for Wearables -- 2.2 Advancements in Wearables -- 2.2.1 The Wearable Motherboard - a User-Centric Approach to the Design of Wearables -- 2.2.2 Research in Flexible Electronics -- 2.2.3 The Latest Trends in Commercial Wearables -- 3 Textiles and Clothing: The Meta-Wearable -- 3.1 Attributes of the Textile Meta-Wearable -- 3.2 Realization of the Meta-Wearable: The Wearable Motherboard -- 3.2.1 Wearable Motherboard Architecture -- 3.2.2 Convergence and Interactive Textiles -- 3.3 Applications of Wearables -- 4 Challenges and Opportunities -- 4.1 Technical Challenges -- 4.2 Making a Business Case -- 5 The Future of Wearables: Defining the Research Roadmap -- 5.1 Imagine the Future -- 5.2 The Research Roadmap: A Transdisciplinary Approach to Realizing the Future -- References -- 1.2 Social Aspects of Wearability and Interaction -- 1 Introduction -- 2 Social Interpretation of Aesthetics -- 2.1 Visual Processing of Aesthetics -- 2.2 Visual Expression of Individual and Group Identity -- 3 Adoption of Innovation and Aesthetic Change -- 3.1 The Fashion Cycle: Aesthetic Change in Fashion -- 3.2 Social Leadership in Fashion -- 4 On-Body Interaction: Social Acceptance of Gesture -- 4.1 Conspicuity and Social Weight -- 4.2 Impact of Body Location and Handedness -- 4.3 Impact of Cultural Norms -- 4.4 The "Vocabulary" of Gesture.
4.5 Differentiating Passive and Active Gestures -- 5 Case Study: Google Glass -- 6 Conclusion -- References -- 1.3 Wearable Haptics -- 1 Introduction -- 2 The Need for Wearable Haptic Devices -- 3 Categories of Wearable Haptic and Tactile Display -- 3.1 Force Feedback Devices -- 3.2 Vibro-Tactile Feedback Devices -- 3.3 Electro-Tactile Feedback Devices -- 4 Display of Friction and Weight Illusions Based on Fingertip Manipulation -- 4.1 Creation of Haptic Sensation via Finger Pulp Manipulation -- 4.2 Deformation of the Contact Area -- 4.3 Weight and Friction Illusion Display -- 5 A Wearable Sensorimotor Enhancer -- 5.1 Improvement of Haptic Sensory Capability for Enhanced Motor Performance -- 5.2 A Wearable Sensorimotor Enhancer Based on the Stochastic Resonance Effect -- 5.2.1 Two-Point Discrimination Test -- 5.2.2 One-Point Touch Test -- 5.2.3 Active Sensory Test - Texture Discrimination -- 5.2.4 Motor Skill Test - Minimal-Force Grasping -- 6 Conclusions -- References -- 2.1 Wearable Bio and Chemical Sensors -- 1 Introduction -- 1.1 Chemical and Biochemical Sensors -- 1.2 Parameters of Interest -- 2 System Design -- 2.1 Sample Handling -- 2.1.1 Transport of Fluids in a Textile -- 2.1.2 Microneedle Technology -- 2.1.3 Sampling Gases -- 2.2 Types of Sensors -- 2.2.1 Wearable Colorimetric Sensing Platforms -- 2.2.2 Electrochemical -- 3 Challenges in Chemical Biochemical Sensing -- 3.1 Sensor Stability -- 3.2 Interface with the Body -- 3.3 Textile Integration -- 3.4 Power Requirements -- 4 Application Areas -- 4.1 Personal Health -- 4.2 Sports Performance -- 4.3 Safety and Security -- 5 Conclusions -- References -- 2.2 Wearable Inertial Sensors and Their Applications -- 1 Introduction -- 2 Wearable Inertial Sensors -- 2.1 Principles of Inertial Sensors -- 2.2 Accelerometers -- 2.3 Gyroscopic Sensors -- 2.4 Magnetic Sensors -- 2.4.1 The Hall Effect.
2.4.2 Magnetoimpedance Sensors -- 2.4.3 Magnetoresistance Sensors -- 2.4.4 Giant Magnetoresistance Sensors -- 3 Obtained Parameters from Inertia Sensors -- 3.1 Mathematical Analyses -- 3.2 Comparison between Rehabilitation Score and Acceleration -- 4 Applications for Wearable Motion Sensors -- 4.1 Fall Risk Assessment with Rehabilitation Battery -- 4.2 Fall Detection -- 4.3 Quantitative Evaluation of Hemiplegic Patients -- 4.4 Clinical Assessment for Parkinson's Disease -- 4.5 Energy Expenditure -- 5 Practical Considerations for Wearable Inertial Sensor Applications in Clinical Practice and Future Research Directions -- References -- 2.3 Application of Optical Heart Rate Monitoring -- 1 Introduction -- 2 Photoplethysmography Basics -- 2.1 History -- 2.2 Measurement Principles -- 2.3 Measurement Sites -- 2.4 Factors Affecting the Quality of Signal -- 2.5 Motion Artifact Minimization and Removal -- 2.5.1 Tissue Modifications Due to Movements -- 2.5.2 Relative Motion of the Sensor-Skin Interface -- 2.5.3 Changes in the Pressure between the Optical Probe and the Skin -- 2.6 Optomechanical Design -- 2.7 Dedicated Signal Processing -- 3 Applications -- 3.1 Sport and Fitness -- 3.2 Daily Life -- 3.3 HRV Applications -- 4 Conclusion and Outlook -- Nomenclature -- References -- 2.4 Measurement of Energy Expenditure by Body-worn Heat-flow Sensors -- 1 Introduction -- 2 Energy Expenditure Background -- 3 Examples of Body-Worn Devices -- 3.1 Motion-Based Estimation of Energy Expenditure -- 3.2 Indirect Calorimeters -- 3.2.1 Cosmed K4b2 -- 3.2.2 MicroLife Bodygem -- 3.3 Direct Calorimeters -- 3.3.1 Historical Water-Cooled Suits -- 3.3.2 Historical Heat-Flow Gauges -- 3.4 Body Media -- 3.5 MetaLogics Personal Calorie Monitor -- 4 Design considerations -- 5 Performance -- 6 Validations -- 6.1 Comparison to Metabolic Cart -- 6.2 Comparison to Room Calorimeter.
7 Conclusion -- Glossary -- References -- 3.1 Knitted Electronic Textiles -- 1 From Fibers to Textile Sensors -- 2 The Interlaced Network -- 3 Textile Sensors for Physiological State Monitoring -- 4 Biomechanical Sensing -- 5 Non-Invasive Sweat Monitoring by Textile Sensors -- 6 Smart Fabrics and Interactive Textile Platforms for Remote Monitoring -- 7 System for Remote Rehabilitation -- 8 Systems for Emotional State Assessment -- 9 Conclusions -- Glossary -- References -- 3.2 Woven Electronic Textiles -- 1 Introduction -- 2 Textiles -- 2.1 Yarn -- 2.2 Textile Weaves -- 2.3 Looms -- 3 Applications -- 3.1 Touchpad -- 3.2 Textile Switch -- 3.3 Textile Electrodes -- 3.4 RFID Textiles -- 4 Summary -- Glossary -- References -- 3.3 Flexible Electronics from Foils to Textiles: Materials, Devices, and Assembly -- 1 Introduction -- 2 Thin-Film Transistors: Materials and Technologies -- 3 Review of Semiconductors Employed in Flexible Electronics -- 4 Thin-Film Transistors Based on a-IGZO -- 4.1 Thin-Film Transistor Fabrication and Characterization -- 4.2 Influence of Mechanical Strain -- 4.3 Analog and Digital Circuits Based on a-IGZO -- 4.3.1 Digital Circuits -- 4.3.2 Analog Circuits -- 5 Further Improvements and Limitations -- 5.1 Thin-Film Transistors by Self-Aligned Lithography -- 5.2 Flexible Double-Gate TFTs -- 5.3 Flexible a-IGZO TFTs with Vertical Channel -- 6 Plastic Electronics for Smart Textiles -- 6.1 Textile E-nose -- 6.2 Textile Integrated Near-Infrared Spectroscopy System -- 7 Outlook and Conclusions -- References -- 4.1 Energy Harvesting at the Human Body -- 1 Introduction to Energy Harvesting Systems -- 2 Energy Harvesting from Temperature Gradient at the Human Body -- 2.1 Thermoelectric Generators -- 2.2 DC-DC Converter Topologies -- 2.3 DC-DC Converter Design for Ultra-low Input Voltages.
2.3.1 Maximum Power Point Tracking for Impedance Matching -- 3 Energy Harvesting from Foot Motion -- 3.1 Physical Principles -- 3.2 AC-DC Converters -- 4 Wireless Energy Transmission -- 4.1 Inductive Wireless Energy Transfer in the Near Field -- 4.2 Capacitive Wireless Energy Transfer in the Near Field -- 4.3 Electromagnetic Wireless Energy Transmission in the Far Field -- 4.4 RFID Technology as an Example Application -- 4.5 Wireless Power Transmission Regulations -- 4.6 Influence of the Body on the Wireless System -- 5 Energy Harvesting from Light -- 5.1 Physical Principles -- 5.2 DC-DC Converter -- 6 Energy and Power Consumption Issues -- 7 Conclusions and Future Considerations -- References -- S.1 Energy Harvesting from Temperature Gradient at the Human Body: DC-DC Converter Design for Ultra-low Input Voltages -- S.1.1 Bipolar DC-DC Converter Design -- S.1.2 ASIC Design and Demonstrator -- S.1.3 Maximum-Power Point Tracking for Impedance Matching -- S.2 Energy harvesting from Foot Motion: AC-DC Converter -- S.2.1 AC-DC Linear Rectifiers -- S.2.2 AC-DC Nonlinear Rectifiers -- S.3 Energy harvesting from Light: MPPT Algorithms -- References for the Supplemental Material -- 4.2 Introduction to RF Energy Harvesting -- 1 RF Energy Harvesting Fundamentals and Practical Limitations -- 1.1 Wave Propagation, Antenna Effective Area, and Available Power -- 1.2 Antenna-Rectifier Interface Voltage -- 1.3 Practical Limitations -- 2 Impedance Mismatch, Losses, and Efficiency -- 2.1 Available Components and Technology -- 2.2 Regulations and Maximum Achievable Distance -- 3 Distribution of Harvested Power in a Realistic Environment -- 3.1 Ambient RF Power -- 4 Charge Pump Rectifier Topologies -- 5 Effect of Load and Source Variations -- 5.1 Optimum Power Transfer Techniques -- 6 Antenna-Rectifier Co-Design -- 6.1 Measurements and Verification -- 7 Conclusion.
Acknowledgement.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.