Nanotechnologies for Synthetic Super Non-Wetting Surfaces.
Material type:
- text
- computer
- online resource
- 9781119015208
- 620.44
- TA418.9.N35 -- .S464 2014eb
Cover -- Title Page -- Copyright -- Contents -- Chapter 1: Nanotechnologies for Synthetic Super Non-wetting Surfaces -- 1.1. Introduction -- 1.2. Modeling of liquid-solid interaction -- 1.3. Microscale and nanoscale coating processes -- 1.4. Experimental characterization -- 1.5. Emerging applications -- 1.6. Conclusion -- 1.7. Bibliography -- Chapter 2: Wetting on Heterogeneous Surfaces -- 2.1. Introduction -- 2.2. Wetting of an ideal surface: the Young contact angle -- 2.3. Real surfaces: apparent contact angle and contact angle hysteresis -- 2.4. Relationship between contact angle hysteresis and drop adhesion -- 2.5. Wetting of heterogeneous materials: the Wenzel and Cassie-Baxter models -- 2.5.1. Impact of roughness: the Wenzel wetting state -- 2.5.2. Impact of chemical heterogeneities: the Cassie-Baxter wetting state -- 2.5.3. The lotus effect: toward super non-wetting surfaces -- 2.6. Conclusion -- 2.7. Bibliography -- Chapter 3: Engineering Super Non-wetting Materials -- 3.1. Introduction -- 3.2. Surface robustness -- 3.2.1. Stability of Cassie and Wenzel wetting states -- 3.2.2. The contact line pinning criterion -- 3.2.3. The Cassie to Wenzel transition -- 3.2.4. Influence of sidewall angle -- 3.2.5. Designing superoleophobic surfaces -- 3.2.6. Conclusion -- 3.3. Contact angle hysteresis on super non-wetting materials -- 3.3.1. Contact line pinning on dilute micropillars -- 3.3.2. Computing metastable states -- 3.3.3. Contact angle hysteresis modeling: perspectives -- 3.4. Conclusion -- 3.5. Bibliography -- Chapter 4: Fabrication of Synthetic Super Non-wetting Surfaces -- 4.1. Introduction -- 4.2. Full substrate technologies -- 4.2.1. Thermal evaporation -- 4.2.2. Pulsed laser deposition -- 4.2.3. Sputtering deposition -- 4.2.4. Atomic layer deposition -- 4.2.5. Plasma-enhanced chemical vapor deposition.
4.2.6. Thermal spraying deposition -- 4.2.7. Electrospray deposition -- 4.2.8. Electrospinning -- 4.2.9. Electroless plating deposition -- 4.2.10. Electroplating -- 4.2.11. Chemical solution deposition (spin/dip/spray/blade coating) -- 4.2.12. Colloidal assembly -- 4.2.13. Hydrothermal synthesis -- 4.2.14. Catalyst-assisted growth -- 4.2.15. Controlled radical polymerizations -- 4.3. Direct writing technologies -- 4.3.1. Inkjet printing -- 4.3.2. Drop casting -- 4.3.3. Laser-assisted deposition -- 4.3.4. Contact printing -- 4.3.5. Dip pen lithography -- 4.3.6. Pneumatic dispensing -- 4.3.7. Screen printing -- 4.4. Conclusion -- 4.5. Bibliography -- Chapter 5: Characterization Techniques for Super Non-wetting Surfaces -- 5.1. Introduction -- 5.2. The sessile drop method -- 5.2.1. Equipment and experimental procedure -- 5.2.2. Drop shape analysis -- 5.2.3. The volume oscillation method -- 5.2.4. The tilted plate method -- 5.3. Wilhelmy method -- 5.4. Robustness measurement -- 5.4.1. Drop compression -- 5.4.2. Drop evaporation -- 5.4.3. Hydrostatic pressure -- 5.4.4. Drop impact -- 5.4.5. Other methods (electrowetting and surface vibrations) -- 5.4.6. Conclusion on the robustness measurement techniques -- 5.5. Advanced techniques for better understanding of super non-wetting surfaces -- 5.5.1. Imaging of the 3D geometry of the composite interface -- 5.5.2. Imaging of the temporal evolution of the 3D composite interface -- 5.5.3. Conclusion -- 5.6. Conclusion -- 5.7. Bibliography -- Chapter 6: Emerging Applications -- 6.1. Introduction -- 6.2. Lab-on-a-chip -- 6.2.1. Displacing liquid (continuous and digital) -- 6.2.2. Liquid confinement for detection (SERS and impedance spectroscopy) or analysis (mass spectrometry) -- 6.3. Drag reduction -- 6.4. Super non-wetting surfaces for the directed self-assembly of micro- and nano-objects.
6.5. Super non-wetting materials for cell biology -- 6.6. Slippery liquid-infused porous surfaces -- 6.7. Conclusion -- 6.8. Bibliography -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.