Aircraft Propulsion and Gas Turbine Engines.
Material type:
- text
- computer
- online resource
- 9781466595170
- 629.134/353
- TL709 .E473 2017
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- What's New in the Second Edition: Chapter-by-Chapter Content Changes -- New Chapters -- Supplements -- Author -- Section I: Aero Engines and Gas Turbines -- Chapter 1: History and Classifications of Aeroengines -- 1.1 Pre-Jet Engine History -- 1.1.1 Early Activities in Egypt and China -- 1.1.2 Leonardo da Vinci -- 1.1.3 Branca's Stamping Mill -- 1.1.4 Newton's Steam Wagon -- 1.1.5 Barber's Gas Turbine -- 1.1.6 Miscellaneous Aero-Vehicle's Activities in the Eighteenth and Nineteenth Centuries -- 1.1.7 Wright Brothers -- 1.1.8 Significant Events up to the 1940s -- 1.1.8.1 Aero-Vehicle Activities -- 1.1.8.2 Reciprocating Engines -- 1.2 Jet Engines -- 1.2.1 Jet Engines Inventors: Dr. Hans von Ohain and Sir Frank Whittle -- 1.2.1.1 Sir Frank Whittle (1907-1996) -- 1.2.1.2 Dr. Hans von Ohain (1911-1998) -- 1.2.2 Turbojet Engines -- 1.2.3 Turboprop and Turboshaft Engines -- 1.2.4 Turbofan Engines -- 1.2.5 Propfan Engine -- 1.2.6 Pulsejet, Ramjet, and Scramjet Engines -- 1.2.6.1 Pulsejet Engine -- 1.2.6.2 Ramjet and Scramjet Engines -- 1.2.7 Industrial Gas Turbine Engines -- 1.3 Classifications of Aerospace Engines -- 1.4 Classification of Jet Engines -- 1.4.1 Ramjet -- 1.4.2 Pulsejet -- 1.4.3 Scramjet -- 1.4.4 Turboramjet -- 1.4.5 Turborocket -- 1.5 Classification of Gas Turbine Engines -- 1.5.1 Turbojet Engines -- 1.5.2 Turboprop -- 1.5.3 Turboshaft -- 1.5.4 Turbofan Engines -- 1.5.5 Propfan Engines -- 1.5.6 Advanced Ducted Fan -- 1.6 Industrial Gas Turbines -- 1.7 Non-Airbreathing Engines -- 1.8 The Future of Aircraft and Powerplant Industries -- 1.8.1 Closure -- Problems -- References -- Chapter 2: Performance Parameters of Jet Engines -- 2.1 Introduction -- 2.2 Thrust Force -- 2.3 Factors Affecting Thrust -- 2.3.1 Jet Nozzle -- 2.3.2 Airspeed -- 2.3.3 Mass Airflow.
2.3.4 Altitude -- 2.3.5 Ram Effect -- 2.4 Engine Performance Parameters -- 2.4.1 Propulsive Efficiency -- 2.4.2 Thermal Efficiency -- 2.4.2.1 Ramjet, Scramjet, Turbojet, and Turbofan Engines -- 2.4.2.2 Turboprop and Turboshaft Engines -- 2.4.3 Propeller Efficiency -- 2.4.4 Overall Efficiency -- 2.4.5 Takeoff Thrust -- 2.4.6 Specific Fuel Consumption -- 2.4.6.1 Ramjet, Turbojet, and Turbofan Engines -- 2.4.6.2 Turboprop Engines -- 2.4.7 Aircraft Range -- 2.4.8 Range Factor -- 2.4.9 Endurance Factor -- 2.4.10 Specific Impulse -- 2.4.11 Mission Segment Weight Fraction -- 2.4.12 Route Planning -- 2.4.12.1 Point of No Return -- 2.4.12.2 Critical Point -- Problems -- References -- Chapter 3: Pulsejet and Ramjet Engines -- 3.1 Introduction -- 3.2 Pulsejet Engines -- 3.2.1 Introduction -- 3.2.2 Valved Pulsejet -- 3.2.3 Valveless Pulsejet -- 3.2.4 Pulsating Nature of Flow Parameters in Pulsejet Engines -- 3.2.5 Pulse Detonation Engine -- 3.3 Ramjet Engines -- 3.3.1 Introduction -- 3.3.2 Classifications of Ramjet Engines -- 3.3.2.1 Subsonic-Supersonic Types -- 3.3.2.2 Fixed Geometry-Variable Geometry Types -- 3.3.2.3 Liquid-Fueled and Solid-Fueled Types -- 3.3.3 Ideal Ramjet -- 3.3.3.1 Real Cycle -- 3.4 Case Study -- 3.5 Nuclear Ramjet -- 3.6 Double-Throat Ramjet Engine -- 3.7 Solid-Fueled Ramjet Engine -- 3.8 Summary and Governing Equations for Shock Waves and Isentropic Flow -- 3.8.1 Summary (Figure 3.46) -- 3.8.2 Normal Shock Wave Relations -- 3.8.3 Oblique Shock Wave Relations -- 3.8.4 Rayleigh Flow Equations -- 3.8.5 Isentropic Relation -- Problems -- References -- Chapter 4: Turbojet Engine -- 4.1 Introduction -- 4.2 Single Spool -- 4.2.1 Examples of Engines -- 4.2.2 Thermodynamic Analysis -- 4.2.3 Ideal Case -- 4.2.4 Actual Case -- 4.2.4.1 General Description -- 4.2.4.2 Governing Equations.
4.2.5 Comparison between Operative and Inoperative Afterburner -- 4.3 Two-Spool Engine -- 4.3.1 Non-Afterburning Engine -- 4.3.1.1 Example of Engines -- 4.3.1.2 Thermodynamic Analysis -- 4.3.2 Afterburning Engine -- 4.3.2.1 Examples for Two-Spool Afterburning Turbojet Engines -- 4.3.2.2 Thermodynamic Analysis -- 4.4 Statistical Analysis -- 4.5 Thrust Augmentation -- 4.5.1 Water Injection -- 4.5.2 Afterburning -- 4.5.3 Pressure Loss in an Afterburning Engine -- 4.6 Supersonic Turbojet -- 4.7 Optimization of the Turbojet Cycle -- 4.8 Micro Turbojet -- Problems -- References -- Chapter 5: Turbofan Engines -- 5.1 Introduction -- 5.2 Forward Fan Unmixed Single-Spool Configuration -- 5.3 Forward Fan Unmixed Two-Spool Engines -- 5.3.1 The Fan and Low-Pressure Compressor (LPC) on One Shaft -- 5.3.2 Fan Driven by the LPT and the Compressor Driven by the HPT -- 5.3.3 A Geared Fan Driven by the LPT and the Compressor Driven by the HPT -- 5.3.3.1 Examples for This Configuration -- 5.4 Forward Fan Unmixed Three-Spool Engine -- 5.4.1 Examples for Three-Spool Engines -- 5.5 Forward Fan Mixed-Flow Engine -- 5.5.1 Mixed-Flow Two-Spool Engine -- 5.6 Mixed Turbofan with Afterburner -- 5.6.1 Introduction -- 5.6.2 Ideal Cycle -- 5.6.3 Real Cycle -- 5.7 Aft-Fan -- 5.8 VTOL and STOL (V/STOL) -- 5.8.1 Swiveling Nozzles -- 5.8.2 Switch-in Deflector System -- 5.8.2.1 Cruise -- 5.8.2.2 Takeoff or Lift Thrust -- 5.9 Performance Analysis -- 5.10 Geared Turbofan Engines -- 5.11 Summary -- Problems -- References -- Chapter 6: Shaft Engines: Internal Combustion, Turboprop, Turboshaft, and Propfan Engines -- 6.1 Introduction -- 6.2 Internal Combustion Engines -- 6.2.1 Introduction -- 6.2.2 Types of Aero Piston Engine -- 6.2.2.1 Rotary Engines -- 6.2.2.1.1 Conventional Types -- 6.2.2.1.2 Wankel Engines -- 6.2.2.2 Reciprocating Engines -- 6.2.2.2.1 In-Line Engines.
6.2.2.2.2 Horizontally Opposed Engines -- 6.2.2.2.3 V-Type Engines -- 6.2.2.2.4 X-Type Engines -- 6.2.2.2.5 H-Type Engine -- 6.2.2.2.6 Radial Type Engine -- 6.2.2.3 Supercharging and Turbocharging Engines -- 6.2.3 Aerodynamics and Thermodynamics of the Reciprocating Internal Combustion Engine -- 6.2.3.1 Terminology for the Four-Stroke Engine -- 6.2.3.2 Air-Standard Analysis -- 6.2.3.3 Engine Thermodynamics Cycles -- 6.2.3.3.1 Four-Stroke Spark Ignition Otto Cycle Engines at WOT -- 6.2.3.3.2 Two-Stroke Spark Ignition (Otto Cycle) Engines -- 6.2.3.3.3 Four Stroke Diesel Engines -- 6.2.3.3.4 Two-Stroke Diesel Engines -- 6.2.3.3.5 Summary for Piston Engines Used in Land, Sea, and Air applications -- 6.2.3.4 Superchargers/Turbochargers -- 6.3 Aircraft Propellers -- 6.3.1 Introduction -- 6.3.2 Classifications -- 6.3.2.1 Source of Power -- 6.3.2.2 Material -- 6.3.2.3 Coupling to the Output Shaft -- 6.3.2.4 Control -- 6.3.2.5 Number of Propellers Coupled to Each Engine -- 6.3.2.6 Direction of Rotation -- 6.3.2.7 Propulsion Method -- 6.3.2.8 Number of Blades -- 6.3.3 Aerodynamic Design -- 6.3.3.1 Axial Momentum (or Actuator Disk) Theory -- 6.3.3.2 Modified Momentum or Simple Vortex Model -- 6.3.3.3 Blade Element Considerations -- 6.3.3.4 Dimensionless Parameters -- 6.3.3.5 Typical Propeller Performance -- 6.4 Turboprop Engines -- 6.4.1 Introduction to Turboprop Engines -- 6.4.2 Classification of Turboprop Engines -- 6.4.3 Thermodynamics Analysis of Turboprop Engines -- 6.4.3.1 Single-Spool Turboprop -- 6.4.3.2 Two-Spool Turboprop -- 6.4.4 Analogy with Turbofan Engines -- 6.4.5 Equivalent Engine Power -- 6.4.5.1 Static Condition -- 6.4.5.2 Flight Operation -- 6.4.6 Fuel Consumption -- 6.4.7 Turboprop Installation -- 6.4.8 Details of Some Engines -- 6.4.9 Performance Analysis -- 6.4.10 Comparison between Turbojet, Turbofan and Turboprop Engines.
6.5 Turboshaft Engines -- 6.5.1 Power Generated by Turboshaft Engines -- 6.5.1.1 Single-Spool Turboshaft -- 6.5.1.2 Double-Spool Turboshaft -- 6.5.2 Examples for Turboshaft Engines -- 6.6 Propfan Engines -- 6.7 Conclusion -- Problems -- References -- Chapter 7: High-Speed Supersonic and Hypersonic Engines -- 7.1 Introduction -- 7.2 Supersonic Aircraft and Programs -- 7.2.1 Anglo-French Activities -- 7.2.1.1 Concorde -- 7.2.1.2 BAe-Aerospatiale AST -- 7.2.2 Russian Activities -- 7.2.2.1 Tupolev TU-144 -- 7.2.3 The U.S. Activities -- 7.3 The Future of Commercial Supersonic Technology -- 7.4 Technology Challenges of Future Flight -- 7.5 High-Speed Supersonic and Hypersonic Propulsion -- 7.5.1 Introduction -- 7.5.2 Hybrid-Cycle Engine -- 7.6 Turboramjet Engine -- 7.7 Wraparound Turboramjet -- 7.7.1 Operation as a Turbojet Engine -- 7.7.2 Operation as a Ramjet Engine -- 7.8 Over/Under Turboramjet -- 7.8.1 Turbojet Mode -- 7.8.2 Dual Mode -- 7.8.3 Ramjet Mode -- 7.9 Turboramjet Performance -- 7.9.1 Turbojet Mode -- 7.9.2 Ramjet Mode -- 7.9.3 Dual Mode -- 7.10 Case Study -- 7.11 Examples for Turboramjet Engines -- 7.12 Hypersonic Flight -- 7.12.1 History of Hypersonic Vehicles -- 7.12.2 Hypersonic Commercial Transport -- 7.12.3 Military Applications -- 7.13 Scramjet Engines -- 7.13.1 Introduction -- 7.13.2 Thermodynamics -- 7.14 Intake of a Scramjet Engine -- 7.14.1 Case Study -- 7.15 Combustion Chamber -- 7.15.1 Fuel Mixing in Parallel Stream -- 7.15.1.1 Ramp Injectors -- 7.15.2 Fuel Mixing in Normal Stream -- 7.16 Nozzle -- 7.17 Case Study -- 7.18 Dual-Mode Combustion Engine (Dual Ram-Scramjet) -- 7.18.1 Aero-Thermodynamics of Dual-Mode Scramjet -- Problems -- References -- Chapter 8: Industrial Gas Turbines -- 8.1 Introduction -- 8.2 Categories of Gas Turbines -- 8.3 Types of Industrial Gas Turbines -- 8.4 Single-Shaft Engine.
8.4.1 Single Compressor and Turbine.
Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book's first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.