The Real Fatou Conjecture. (AM-144), Volume 144.
Material type:
- text
- computer
- online resource
- 9781400865185
- 516.3/62
- QA614.58 -- .G73 1998eb
Cover -- Title -- Copyright -- Dedication -- Contents -- 1 Review of Concepts -- 1.1 Theory of Quadratic Polynomials -- 1.1.1 Weak hyperbolicity of quadratic polynomials -- 1.2 Dense Hyperbolicity -- 1.2.1 Theorem and its consequences -- 1.2.2 Reduced theorem -- 1.3 Steps of the Proof of Dense Hyperbolicity -- 1.3.1 Regularly returning sets and box mappings -- 1.3.2 Quadratic-like returns -- 1.3.3 Initial construction and geometry of inducing -- 1.3.4 Branchwise equivalence -- 1.3.5 Pull-back -- 1.3.6 Conclusion of dense hyperbolicity -- 2 Quasiconformal Gluing -- 2.1 Extendibility and Distortion -- 2.1.1 Distortion lemmas -- 2.1.2 Geodesic neighborhoods -- 2.2 Saturated Maps -- 2.3 Gluing of Saturated Maps -- 2.3.1 The main step of the construction -- 2.3.2 Proof of the reduced theorem -- 3 Polynomial-Like Property -- 3.1 Domains in the Complex Plane -- 3.2 Cutting Times -- 3.2.1 Reduction to a real estimate -- 3.2.2 Proof of the real estimate -- 4 Linear Growth of Moduli -- 4.1 Box Maps and Separation Symbols -- 4.1.1 A general outline -- 4.1.2 The growth of moduli -- 4.1.3 Separation symbols -- 4.1.4 Non-close returns -- 4.1.5 Close returns -- 4.2 Conformal Roughness -- 4.2.1 Lack of roughness as regularity -- 4.2.2 Quasi-invariance of roughness -- 4.3 Growth of the Separation Index -- 4.3.1 Consequences of roughness -- 4.3.2 Proof of Theorem 1.2 -- 5 Quasiconformal Techniques -- 5.1 Initial Inducing -- 5.1.1 Yoccoz partition -- 5.1.2 Holomorphic motions and q.c. correspondence -- 5.2 Quasiconformal Pull-back -- 5.2.1 Definition of pull-back -- 5.2.2 Maximal dilatation and the pull-back -- 5.3 Gluing Quasiconformal Maps -- 5.3.1 Quasiconformal mappings on ring domains -- 5.4 Regularity of Saturated Maps -- 5.5 Straightening Theorem -- Bibliography -- Index.
No detailed description available for "The Real Fatou Conjecture. (AM-144), Volume 144".
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.