ORPP logo
Image from Google Jackets

Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142), Volume 142.

By: Material type: TextTextSeries: Annals of Mathematics StudiesPublisher: Princeton : Princeton University Press, 1996Copyright date: ©1996Edition: 1st edDescription: 1 online resource (264 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781400865178
Subject(s): Genre/Form: Additional physical formats: Print version:: Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142), Volume 142DDC classification:
  • 514/.3
LOC classification:
  • QA613 -- .M42 1996eb
Online resources:
Contents:
Cover -- Title -- Copyright -- Contents -- 1 Introduction -- 2 Rigidity of hyperbolic manifolds -- 2.1 The Hausdorff topology -- 2.2 Manifolds and geometric limits -- 2.3 Rigidity -- 2.4 Geometric inflexibility -- 2.5 Deep points and differentiability -- 2.6 Shallow sets -- 3 Three-manifolds which fiber over the circle -- 3.1 Structures on surfaces and 3-manifolds -- 3.2 Quasifuchsian groups -- 3.3 The mapping class group -- 3.4 Hyperbolic structures on mapping tori -- 3.5 Asymptotic geometry -- 3.6 Speed of algebraic convergence -- 3.7 Example: torus bundles -- 4 Quadratic maps and renormalization -- 4.1 Topologies on domains -- 4.2 Polynomials and polynomial-like maps -- 4.3 The inner class -- 4.4 Improving polynomial-like maps -- 4.5 Fixed points of quadratic maps -- 4.6 Renormalization -- 4.7 Simple renormalization -- 4.8 Infinite renormalization -- 5 Towers -- 5.1 Definition and basic properties -- 5.2 Infinitely renormalizable towers -- 5.3 Bounded combinatorics -- 5.4 Robustness and inner rigidity -- 5.5 Unbranched renormalizations -- 6 Rigidity of towers -- 6.1 Fine towers -- 6.2 Expansion -- 6.3 Julia sets fill the plane -- 6.4 Proof of rigidity -- 6.5 A tower is determined by its inner classes -- 7 Fixed points of renormalization -- 7.1 Framework for the construction of fixed points -- 7.2 Convergence of renormalization -- 7.3 Analytic continuation of the fixed point -- 7.4 Real quadratic mappings -- 8 Asymptotic structure in the Julia set -- 8.1 Rigidity and the postcritical Cantor set -- 8.2 Deep points of Julia sets -- 8.3 Small Julia sets everywhere -- 8.4 Generalized towers -- 9 Geometric limits in dynamics -- 9.1 Holomorphic relations -- 9.2 Nonlinearity and rigidity -- 9.3 Uniform twisting -- 9.4 Quadratic maps and universality -- 9.5 Speed of convergence of renormalization -- 10 Conclusion.
Appendix A. Quasiconformal maps and flows -- A.1 Conformal structures on vector spaces -- A.2 Maps and vector fields -- A.3 BMO and Zygmund class -- A.4 Compactness and modulus of continuity -- A.5 Unique integrability -- Appendix B. Visual extension -- B.1 Naturality, continuity and quasiconformality -- B.2 Representation theory -- B.3 The visual distortion -- B.4 Extending quasiconformal isotopies -- B.5 Almost isometries -- B.6 Points of differentiability -- B. 7 Example: stretching a geodesic -- Bibliography -- Index.
Summary: No detailed description available for "Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142), Volume 142".
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title -- Copyright -- Contents -- 1 Introduction -- 2 Rigidity of hyperbolic manifolds -- 2.1 The Hausdorff topology -- 2.2 Manifolds and geometric limits -- 2.3 Rigidity -- 2.4 Geometric inflexibility -- 2.5 Deep points and differentiability -- 2.6 Shallow sets -- 3 Three-manifolds which fiber over the circle -- 3.1 Structures on surfaces and 3-manifolds -- 3.2 Quasifuchsian groups -- 3.3 The mapping class group -- 3.4 Hyperbolic structures on mapping tori -- 3.5 Asymptotic geometry -- 3.6 Speed of algebraic convergence -- 3.7 Example: torus bundles -- 4 Quadratic maps and renormalization -- 4.1 Topologies on domains -- 4.2 Polynomials and polynomial-like maps -- 4.3 The inner class -- 4.4 Improving polynomial-like maps -- 4.5 Fixed points of quadratic maps -- 4.6 Renormalization -- 4.7 Simple renormalization -- 4.8 Infinite renormalization -- 5 Towers -- 5.1 Definition and basic properties -- 5.2 Infinitely renormalizable towers -- 5.3 Bounded combinatorics -- 5.4 Robustness and inner rigidity -- 5.5 Unbranched renormalizations -- 6 Rigidity of towers -- 6.1 Fine towers -- 6.2 Expansion -- 6.3 Julia sets fill the plane -- 6.4 Proof of rigidity -- 6.5 A tower is determined by its inner classes -- 7 Fixed points of renormalization -- 7.1 Framework for the construction of fixed points -- 7.2 Convergence of renormalization -- 7.3 Analytic continuation of the fixed point -- 7.4 Real quadratic mappings -- 8 Asymptotic structure in the Julia set -- 8.1 Rigidity and the postcritical Cantor set -- 8.2 Deep points of Julia sets -- 8.3 Small Julia sets everywhere -- 8.4 Generalized towers -- 9 Geometric limits in dynamics -- 9.1 Holomorphic relations -- 9.2 Nonlinearity and rigidity -- 9.3 Uniform twisting -- 9.4 Quadratic maps and universality -- 9.5 Speed of convergence of renormalization -- 10 Conclusion.

Appendix A. Quasiconformal maps and flows -- A.1 Conformal structures on vector spaces -- A.2 Maps and vector fields -- A.3 BMO and Zygmund class -- A.4 Compactness and modulus of continuity -- A.5 Unique integrability -- Appendix B. Visual extension -- B.1 Naturality, continuity and quasiconformality -- B.2 Representation theory -- B.3 The visual distortion -- B.4 Extending quasiconformal isotopies -- B.5 Almost isometries -- B.6 Points of differentiability -- B. 7 Example: stretching a geodesic -- Bibliography -- Index.

No detailed description available for "Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142), Volume 142".

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.